mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 11:39:18 +00:00
BagelDB (bageldb.ai), VectorStore integration. (#8971)
- **Description**: [BagelDB](bageldb.ai) a collaborative vector database. Integrated the bageldb PyPi package with langchain with related tests and code. - **Issue**: Not applicable. - **Dependencies**: `betabageldb` PyPi package. - **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan - **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai) We ran `make format`, `make lint` and `make test` locally. Followed the contribution guideline thoroughly https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --------- Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
This commit is contained in:
21
docs/extras/integrations/providers/bageldb.mdx
Normal file
21
docs/extras/integrations/providers/bageldb.mdx
Normal file
@@ -0,0 +1,21 @@
|
||||
# BagelDB
|
||||
|
||||
> [BagelDB](https://www.bageldb.ai/) (`Open Vector Database for AI`), is like GitHub for AI data.
|
||||
It is a collaborative platform where users can create,
|
||||
share, and manage vector datasets. It can support private projects for independent developers,
|
||||
internal collaborations for enterprises, and public contributions for data DAOs.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
```bash
|
||||
pip install betabageldb
|
||||
```
|
||||
|
||||
|
||||
## VectorStore
|
||||
|
||||
See a [usage example](/docs/integrations/vectorstores/bageldb).
|
||||
|
||||
```python
|
||||
from langchain.vectorstores import Bagel
|
||||
```
|
300
docs/extras/integrations/vectorstores/bageldb.ipynb
Normal file
300
docs/extras/integrations/vectorstores/bageldb.ipynb
Normal file
@@ -0,0 +1,300 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# BagelDB\n",
|
||||
"\n",
|
||||
"> [BagelDB](https://www.bageldb.ai/) (`Open Vector Database for AI`), is like GitHub for AI data.\n",
|
||||
"It is a collaborative platform where users can create,\n",
|
||||
"share, and manage vector datasets. It can support private projects for independent developers,\n",
|
||||
"internal collaborations for enterprises, and public contributions for data DAOs.\n",
|
||||
"\n",
|
||||
"### Installation and Setup\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install betabageldb\n",
|
||||
"```\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create VectorStore from texts"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.vectorstores import Bagel\n",
|
||||
"\n",
|
||||
"texts = [\"hello bagel\", \"hello langchain\", \"I love salad\", \"my car\", \"a dog\"]\n",
|
||||
"# create cluster and add texts\n",
|
||||
"cluster = Bagel.from_texts(cluster_name=\"testing\", texts=texts)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='hello bagel', metadata={}),\n",
|
||||
" Document(page_content='my car', metadata={}),\n",
|
||||
" Document(page_content='I love salad', metadata={})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# similarity search\n",
|
||||
"cluster.similarity_search(\"bagel\", k=3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[(Document(page_content='hello bagel', metadata={}), 0.27392977476119995),\n",
|
||||
" (Document(page_content='my car', metadata={}), 1.4783176183700562),\n",
|
||||
" (Document(page_content='I love salad', metadata={}), 1.5342965126037598)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# the score is a distance metric, so lower is better\n",
|
||||
"cluster.similarity_search_with_score(\"bagel\", k=3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# delete the cluster\n",
|
||||
"cluster.delete_cluster()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create VectorStore from docs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
|
||||
"documents = loader.load()\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"docs = text_splitter.split_documents(documents)[:10]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create cluster with docs\n",
|
||||
"cluster = Bagel.from_documents(cluster_name=\"testing_with_docs\", documents=docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# similarity search\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = cluster.similarity_search(query)\n",
|
||||
"print(docs[0].page_content[:102])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Get all text/doc from Cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"texts = [\"hello bagel\", \"this is langchain\"]\n",
|
||||
"cluster = Bagel.from_texts(cluster_name=\"testing\", texts=texts)\n",
|
||||
"cluster_data = cluster.get()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 54,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"dict_keys(['ids', 'embeddings', 'metadatas', 'documents'])"
|
||||
]
|
||||
},
|
||||
"execution_count": 54,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# all keys\n",
|
||||
"cluster_data.keys()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'ids': ['578c6d24-3763-11ee-a8ab-b7b7b34f99ba',\n",
|
||||
" '578c6d25-3763-11ee-a8ab-b7b7b34f99ba',\n",
|
||||
" 'fb2fc7d8-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
||||
" 'fb2fc7d9-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
||||
" '6b40881a-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
||||
" '6b40881b-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
||||
" '581e691e-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
||||
" '581e691f-3762-11ee-a8ab-b7b7b34f99ba'],\n",
|
||||
" 'embeddings': None,\n",
|
||||
" 'metadatas': [{}, {}, {}, {}, {}, {}, {}, {}],\n",
|
||||
" 'documents': ['hello bagel',\n",
|
||||
" 'this is langchain',\n",
|
||||
" 'hello bagel',\n",
|
||||
" 'this is langchain',\n",
|
||||
" 'hello bagel',\n",
|
||||
" 'this is langchain',\n",
|
||||
" 'hello bagel',\n",
|
||||
" 'this is langchain']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# all values and keys\n",
|
||||
"cluster_data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"cluster.delete_cluster()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create cluster with metadata & filter using metadata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 63,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[(Document(page_content='hello bagel', metadata={'source': 'notion'}), 0.0)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 63,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"texts = [\"hello bagel\", \"this is langchain\"]\n",
|
||||
"metadatas = [{\"source\": \"notion\"}, {\"source\": \"google\"}]\n",
|
||||
"\n",
|
||||
"cluster = Bagel.from_texts(cluster_name=\"testing\", texts=texts, metadatas=metadatas)\n",
|
||||
"cluster.similarity_search_with_score(\"hello bagel\", where={\"source\": \"notion\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 64,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# delete the cluster\n",
|
||||
"cluster.delete_cluster()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Reference in New Issue
Block a user