diff --git a/libs/community/langchain_community/vectorstores/jaguar.py b/libs/community/langchain_community/vectorstores/jaguar.py index f9cce66c42a..688cc81fa10 100644 --- a/libs/community/langchain_community/vectorstores/jaguar.py +++ b/libs/community/langchain_community/vectorstores/jaguar.py @@ -176,7 +176,8 @@ class Jaguar(VectorStore): podstore = self._pod + "." + self._store q = "insert into " + podstore + " (" q += vcol + "," + textcol + ") values ('" + values_comma - q += "','" + texts[i] + "')" + txt = texts[i].replace("'", "\\'") + q += "','" + txt + "')" js = self.run(q, False) ids.append(js["zid"]) i += 1 @@ -199,7 +200,8 @@ class Jaguar(VectorStore): podstore = self._pod + "." + self._store q = "insert into " + podstore + " (" q += names_comma + "," + textcol + ") values (" + values_comma - q += ",'" + texts[i] + "')" + txt = texts[i].replace("'", "\\'") + q += ",'" + txt + "')" if filecol != "": js = self.run(q, True) else: @@ -215,7 +217,7 @@ class Jaguar(VectorStore): k: int = 3, fetch_k: int = -1, where: Optional[str] = None, - score_threshold: Optional[float] = -1.0, + args: Optional[str] = None, metadatas: Optional[List[str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: @@ -227,9 +229,7 @@ class Jaguar(VectorStore): lambda_val: lexical match parameter for hybrid search. where: the where clause in select similarity. For example a where can be "rating > 3.0 and (state = 'NV' or state = 'CA')" - score_threshold: minimal score threshold for the result. - If defined, results with score less than this value will be - filtered out. + args: extra options passed to select similarity kwargs: vector_index=vcol, vector_type=cosine_fraction_float Returns: List of Documents most similar to the query and score for each. @@ -254,7 +254,9 @@ class Jaguar(VectorStore): + ",type=" + vtype ) - q += ",with_score=yes,with_text=yes,score_threshold=" + str(score_threshold) + q += ",with_score=yes,with_text=yes" + if args is not None: + q += "," + args if metadatas is not None: meta = "&".join(metadatas)