mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-09 22:45:49 +00:00
Harrison/from documents (#3919)
Co-authored-by: Gabriel Altay <gabriel.altay@gmail.com>
This commit is contained in:
parent
e7e29f9937
commit
05170b6764
@ -9,6 +9,7 @@ from langchain.embeddings.base import Embeddings
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.llms.base import BaseLLM
|
||||
from langchain.llms.openai import OpenAI
|
||||
from langchain.schemas import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
from langchain.vectorstores.chroma import Chroma
|
||||
@ -67,7 +68,11 @@ class VectorstoreIndexCreator(BaseModel):
|
||||
docs = []
|
||||
for loader in loaders:
|
||||
docs.extend(loader.load())
|
||||
sub_docs = self.text_splitter.split_documents(docs)
|
||||
return self.from_documents(docs)
|
||||
|
||||
def from_documents(self, documents: List[Document]) -> VectorStoreIndexWrapper:
|
||||
"""Create a vectorstore index from documents."""
|
||||
sub_docs = self.text_splitter.split_documents(documents)
|
||||
vectorstore = self.vectorstore_cls.from_documents(
|
||||
sub_docs, self.embedding, **self.vectorstore_kwargs
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user