add custom prompt notebooks (#198)

This commit is contained in:
Harrison Chase
2022-11-26 06:07:02 -08:00
committed by GitHub
parent fcb9b2ffe5
commit 05c5d0b8ee
6 changed files with 450 additions and 2 deletions

View File

@@ -0,0 +1,176 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f897c784",
"metadata": {},
"source": [
"# Custom ExampleSelector\n",
"\n",
"This notebook goes over how to implement a custom ExampleSelector. ExampleSelectors are used to select examples to use in few shot prompts.\n",
"\n",
"An ExampleSelector must implement two methods:\n",
"\n",
"1. An `add_example` method which takes in an example and adds it into the ExampleSelector\n",
"2. A `select_examples` method which takes in input variables (which are meant to be user input) and returns a list of examples to use in the few shot prompt.\n",
"\n",
"\n",
"Let's implement a custom ExampleSelector that just selects two examples at random."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1a945da1",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.example_selector.base import BaseExampleSelector\n",
"from typing import Dict, List\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "62cf0ad7",
"metadata": {},
"outputs": [],
"source": [
"class CustomExampleSelector(BaseExampleSelector):\n",
" \n",
" def __init__(self, examples: List[Dict[str, str]]):\n",
" self.examples = examples\n",
" \n",
" def add_example(self, example: Dict[str, str]) -> None:\n",
" \"\"\"Add new example to store for a key.\"\"\"\n",
" self.examples.append(example)\n",
"\n",
" def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:\n",
" \"\"\"Select which examples to use based on the inputs.\"\"\"\n",
" return np.random.choice(self.examples, size=2, replace=False)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "242d3213",
"metadata": {},
"outputs": [],
"source": [
"examples = [{\"foo\": \"1\"}, {\"foo\": \"2\"}, {\"foo\": \"3\"}]\n",
"example_selector = CustomExampleSelector(examples)"
]
},
{
"cell_type": "markdown",
"id": "2a038065",
"metadata": {},
"source": [
"Let's now try it out! We can select some examples and try adding examples."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "74fbbef5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([{'foo': '2'}, {'foo': '3'}], dtype=object)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"example_selector.select_examples({\"foo\": \"foo\"})"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9bbb5421",
"metadata": {},
"outputs": [],
"source": [
"example_selector.add_example({\"foo\": \"4\"})"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c0eb9f22",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'foo': '1'}, {'foo': '2'}, {'foo': '3'}, {'foo': '4'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"example_selector.examples"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cc39b1e3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([{'foo': '1'}, {'foo': '4'}], dtype=object)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"example_selector.select_examples({\"foo\": \"foo\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1739dd96",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,153 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "9e9b7651",
"metadata": {},
"source": [
"# Custom LLM\n",
"\n",
"This notebook goes over how to create a custom LLM wrapper, in case you want to use your own LLM or a different wrapper than one that is supported in LangChain.\n",
"\n",
"There is only one required thing that a custom LLM needs to implement:\n",
"\n",
"1. A `__call__` method that takes in a string, some optional stop words, and returns a string\n",
"\n",
"There is a second optional thing it can implement:\n",
"\n",
"1. An `_identifying_params` property that is used to help with printing of this class. Should return a dictionary.\n",
"\n",
"Let's implement a very simple custom LLM that just returns the first N characters of the input."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a65696a0",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms.base import LLM\n",
"from typing import Optional, List, Mapping, Any"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d5ceff02",
"metadata": {},
"outputs": [],
"source": [
"class CustomLLM(LLM):\n",
" \n",
" def __init__(self, n: int):\n",
" self.n = n\n",
" \n",
" def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:\n",
" if stop is not None:\n",
" raise ValueError(\"stop kwargs are not permitted.\")\n",
" return prompt[:self.n]\n",
" \n",
" @property\n",
" def _identifying_params(self) -> Mapping[str, Any]:\n",
" \"\"\"Get the identifying parameters.\"\"\"\n",
" return {\"n\": self.n}"
]
},
{
"cell_type": "markdown",
"id": "714dede0",
"metadata": {},
"source": [
"We can now use this as an any other LLM."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "10e5ece6",
"metadata": {},
"outputs": [],
"source": [
"llm = CustomLLM(n=10)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8cd49199",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'This is a '"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm(\"This is a foobar thing\")"
]
},
{
"cell_type": "markdown",
"id": "bbfebea1",
"metadata": {},
"source": [
"We can also print the LLM and see its custom print."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9c33fa19",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mCustomLLM\u001b[0m\n",
"Params: {'n': 10}\n"
]
}
],
"source": [
"print(llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6dac3f47",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,116 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a37d9694",
"metadata": {},
"source": [
"# Custom Prompt Template\n",
"\n",
"This notebook goes over how to create a custom prompt template, in case you want to create your own methodology for creating prompts.\n",
"\n",
"The only two requirements for all prompt templates are:\n",
"\n",
"1. They have a `input_variables` attribute that exposes what input variables this prompt template expects.\n",
"2. They expose a `format` method which takes in keyword arguments corresponding to the expected `input_variables` and returns the formatted prompt.\n",
"\n",
"Let's imagine that we want to create a prompt template that takes in input variables and formats them into the template AFTER capitalizing them. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "26f796e5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import BasePromptTemplate\n",
"from pydantic import BaseModel"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "27919e96",
"metadata": {},
"outputs": [],
"source": [
"class CustomPromptTemplate(BasePromptTemplate, BaseModel):\n",
" template: str\n",
" \n",
" def format(self, **kwargs) -> str:\n",
" capitalized_kwargs = {k: v.upper() for k, v in kwargs.items()}\n",
" return self.template.format(**capitalized_kwargs)\n",
" "
]
},
{
"cell_type": "markdown",
"id": "76d1d84d",
"metadata": {},
"source": [
"We can now see that when we use this, the input variables get formatted."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "eed1ff28",
"metadata": {},
"outputs": [],
"source": [
"prompt = CustomPromptTemplate(input_variables=[\"foo\"], template=\"Capitalized: {foo}\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "94892a3c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Capitalized: LOWERCASE'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt.format(foo=\"lowercase\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3d9a7c7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -602,7 +602,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.7.6"
}
},
"nbformat": 4,