community[minor]: add vikingdb vecstore (#15155)

---------

Co-authored-by: gaoyuan <gaoyuan.20001218@bytedance.com>
This commit is contained in:
高远
2024-01-16 04:34:01 +08:00
committed by GitHub
parent d196646811
commit 061e63eef2
2 changed files with 623 additions and 0 deletions

View File

@@ -0,0 +1,248 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "96ff9e912bfe9d8",
"metadata": {
"collapsed": false
},
"source": [
"# viking DB\n",
"\n",
">[viking DB](https://www.volcengine.com/docs/6459/1163946) is a database that stores, indexes, and manages massive embedding vectors generated by deep neural networks and other machine learning (ML) models.\n",
"\n",
"This notebook shows how to use functionality related to the VikingDB vector database.\n",
"\n",
"To run, you should have a [viking DB instance up and running](https://www.volcengine.com/docs/6459/1165058).\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd771e02d8a93a0",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"!pip install --upgrade volcengine"
]
},
{
"cell_type": "markdown",
"id": "12719205caed0d18",
"metadata": {
"collapsed": false
},
"source": [
"We want to use VikingDBEmbeddings so we have to get the VikingDB API Key."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fbfb32665b4a3640",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-21T09:53:24.186916Z",
"start_time": "2023-12-21T09:53:24.179524Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d8c983d329237fa4",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.vectorstores.vikingdb import VikingDB, VikingDBConfig\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a4aea2eaeb2261",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"loader = TextLoader(\"./test.txt\")\n",
"documents = loader.load()\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=10, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfd593f3deabfaf8",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"db = VikingDB.from_documents(\n",
" docs,\n",
" embeddings,\n",
" connection_args=VikingDBConfig(\n",
" host=\"host\", region=\"region\", ak=\"ak\", sk=\"sk\", scheme=\"http\"\n",
" ),\n",
" drop_old=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "50e6ee12ca7eec39",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-21T10:01:47.355894Z",
"start_time": "2023-12-21T10:01:47.334789Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = db.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b6b81f5995c79ef0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-21T10:01:47.771478Z",
"start_time": "2023-12-21T10:01:47.731485Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"docs[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "a2d932c1290478ee",
"metadata": {
"collapsed": false
},
"source": [
"### Compartmentalize the data with viking DB Collections\n",
"\n",
"You can store different unrelated documents in different collections within same viking DB instance to maintain the context"
]
},
{
"cell_type": "markdown",
"id": "907de4eb10626d2a",
"metadata": {
"collapsed": false
},
"source": [
"Here's how you can create a new collection"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f5a59ba40f7985f",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"db = VikingDB.from_documents(\n",
" docs,\n",
" embeddings,\n",
" connection_args=VikingDBConfig(\n",
" host=\"host\", region=\"region\", ak=\"ak\", sk=\"sk\", scheme=\"http\"\n",
" ),\n",
" collection_name=\"collection_1\",\n",
" drop_old=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7c8eada37b17d992",
"metadata": {
"collapsed": false
},
"source": [
"And here is how you retrieve that stored collection"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "883ec678d47c9adc",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"db = VikingDB.from_documents(\n",
" embeddings,\n",
" connection_args=VikingDBConfig(\n",
" host=\"host\", region=\"region\", ak=\"ak\", sk=\"sk\", scheme=\"http\"\n",
" ),\n",
" collection_name=\"collection_1\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2f0be30cfe70083d",
"metadata": {
"collapsed": false
},
"source": [
"After retreival you can go on querying it as usual."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}