mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-13 08:27:03 +00:00
fireworks[patch]: ruff fixes and rules (#31903)
* bump ruff deps * add more thorough ruff rules * fix said rules
This commit is contained in:
parent
63e3f2dea6
commit
06ab2972e3
@ -4,8 +4,8 @@ from langchain_fireworks.llms import Fireworks
|
|||||||
from langchain_fireworks.version import __version__
|
from langchain_fireworks.version import __version__
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"__version__",
|
|
||||||
"ChatFireworks",
|
"ChatFireworks",
|
||||||
"Fireworks",
|
"Fireworks",
|
||||||
"FireworksEmbeddings",
|
"FireworksEmbeddings",
|
||||||
|
"__version__",
|
||||||
]
|
]
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import contextlib
|
||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
from collections.abc import AsyncIterator, Iterator, Mapping, Sequence
|
from collections.abc import AsyncIterator, Iterator, Mapping, Sequence
|
||||||
@ -16,7 +17,7 @@ from typing import (
|
|||||||
cast,
|
cast,
|
||||||
)
|
)
|
||||||
|
|
||||||
from fireworks.client import AsyncFireworks, Fireworks # type: ignore
|
from fireworks.client import AsyncFireworks, Fireworks # type: ignore[import-untyped]
|
||||||
from langchain_core._api import deprecated
|
from langchain_core._api import deprecated
|
||||||
from langchain_core.callbacks import (
|
from langchain_core.callbacks import (
|
||||||
AsyncCallbackManagerForLLMRun,
|
AsyncCallbackManagerForLLMRun,
|
||||||
@ -94,11 +95,12 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The LangChain message.
|
The LangChain message.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
role = _dict.get("role")
|
role = _dict.get("role")
|
||||||
if role == "user":
|
if role == "user":
|
||||||
return HumanMessage(content=_dict.get("content", ""))
|
return HumanMessage(content=_dict.get("content", ""))
|
||||||
elif role == "assistant":
|
if role == "assistant":
|
||||||
# Fix for azure
|
# Fix for azure
|
||||||
# Also Fireworks returns None for tool invocations
|
# Also Fireworks returns None for tool invocations
|
||||||
content = _dict.get("content", "") or ""
|
content = _dict.get("content", "") or ""
|
||||||
@ -122,13 +124,13 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|||||||
tool_calls=tool_calls,
|
tool_calls=tool_calls,
|
||||||
invalid_tool_calls=invalid_tool_calls,
|
invalid_tool_calls=invalid_tool_calls,
|
||||||
)
|
)
|
||||||
elif role == "system":
|
if role == "system":
|
||||||
return SystemMessage(content=_dict.get("content", ""))
|
return SystemMessage(content=_dict.get("content", ""))
|
||||||
elif role == "function":
|
if role == "function":
|
||||||
return FunctionMessage(
|
return FunctionMessage(
|
||||||
content=_dict.get("content", ""), name=_dict.get("name", "")
|
content=_dict.get("content", ""), name=_dict.get("name", "")
|
||||||
)
|
)
|
||||||
elif role == "tool":
|
if role == "tool":
|
||||||
additional_kwargs = {}
|
additional_kwargs = {}
|
||||||
if "name" in _dict:
|
if "name" in _dict:
|
||||||
additional_kwargs["name"] = _dict["name"]
|
additional_kwargs["name"] = _dict["name"]
|
||||||
@ -137,7 +139,6 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|||||||
tool_call_id=_dict.get("tool_call_id", ""),
|
tool_call_id=_dict.get("tool_call_id", ""),
|
||||||
additional_kwargs=additional_kwargs,
|
additional_kwargs=additional_kwargs,
|
||||||
)
|
)
|
||||||
else:
|
|
||||||
return ChatMessage(content=_dict.get("content", ""), role=role or "")
|
return ChatMessage(content=_dict.get("content", ""), role=role or "")
|
||||||
|
|
||||||
|
|
||||||
@ -149,6 +150,7 @@ def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The dictionary.
|
The dictionary.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
message_dict: dict[str, Any]
|
message_dict: dict[str, Any]
|
||||||
if isinstance(message, ChatMessage):
|
if isinstance(message, ChatMessage):
|
||||||
@ -191,7 +193,8 @@ def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|||||||
"tool_call_id": message.tool_call_id,
|
"tool_call_id": message.tool_call_id,
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"Got unknown type {message}")
|
msg = f"Got unknown type {message}"
|
||||||
|
raise TypeError(msg)
|
||||||
if "name" in message.additional_kwargs:
|
if "name" in message.additional_kwargs:
|
||||||
message_dict["name"] = message.additional_kwargs["name"]
|
message_dict["name"] = message.additional_kwargs["name"]
|
||||||
return message_dict
|
return message_dict
|
||||||
@ -214,7 +217,7 @@ def _convert_chunk_to_message_chunk(
|
|||||||
if raw_tool_calls := _dict.get("tool_calls"):
|
if raw_tool_calls := _dict.get("tool_calls"):
|
||||||
additional_kwargs["tool_calls"] = raw_tool_calls
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
||||||
for rtc in raw_tool_calls:
|
for rtc in raw_tool_calls:
|
||||||
try:
|
with contextlib.suppress(KeyError):
|
||||||
tool_call_chunks.append(
|
tool_call_chunks.append(
|
||||||
create_tool_call_chunk(
|
create_tool_call_chunk(
|
||||||
name=rtc["function"].get("name"),
|
name=rtc["function"].get("name"),
|
||||||
@ -223,11 +226,9 @@ def _convert_chunk_to_message_chunk(
|
|||||||
index=rtc.get("index"),
|
index=rtc.get("index"),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
except KeyError:
|
|
||||||
pass
|
|
||||||
if role == "user" or default_class == HumanMessageChunk:
|
if role == "user" or default_class == HumanMessageChunk:
|
||||||
return HumanMessageChunk(content=content)
|
return HumanMessageChunk(content=content)
|
||||||
elif role == "assistant" or default_class == AIMessageChunk:
|
if role == "assistant" or default_class == AIMessageChunk:
|
||||||
if usage := chunk.get("usage"):
|
if usage := chunk.get("usage"):
|
||||||
input_tokens = usage.get("prompt_tokens", 0)
|
input_tokens = usage.get("prompt_tokens", 0)
|
||||||
output_tokens = usage.get("completion_tokens", 0)
|
output_tokens = usage.get("completion_tokens", 0)
|
||||||
@ -244,16 +245,15 @@ def _convert_chunk_to_message_chunk(
|
|||||||
tool_call_chunks=tool_call_chunks,
|
tool_call_chunks=tool_call_chunks,
|
||||||
usage_metadata=usage_metadata, # type: ignore[arg-type]
|
usage_metadata=usage_metadata, # type: ignore[arg-type]
|
||||||
)
|
)
|
||||||
elif role == "system" or default_class == SystemMessageChunk:
|
if role == "system" or default_class == SystemMessageChunk:
|
||||||
return SystemMessageChunk(content=content)
|
return SystemMessageChunk(content=content)
|
||||||
elif role == "function" or default_class == FunctionMessageChunk:
|
if role == "function" or default_class == FunctionMessageChunk:
|
||||||
return FunctionMessageChunk(content=content, name=_dict["name"])
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
||||||
elif role == "tool" or default_class == ToolMessageChunk:
|
if role == "tool" or default_class == ToolMessageChunk:
|
||||||
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
|
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
|
||||||
elif role or default_class == ChatMessageChunk:
|
if role or default_class == ChatMessageChunk:
|
||||||
return ChatMessageChunk(content=content, role=role)
|
return ChatMessageChunk(content=content, role=role)
|
||||||
else:
|
return default_class(content=content) # type: ignore[call-arg]
|
||||||
return default_class(content=content) # type: ignore
|
|
||||||
|
|
||||||
|
|
||||||
class _FunctionCall(TypedDict):
|
class _FunctionCall(TypedDict):
|
||||||
@ -280,6 +280,7 @@ class ChatFireworks(BaseChatModel):
|
|||||||
from langchain_fireworks.chat_models import ChatFireworks
|
from langchain_fireworks.chat_models import ChatFireworks
|
||||||
fireworks = ChatFireworks(
|
fireworks = ChatFireworks(
|
||||||
model_name="accounts/fireworks/models/llama-v3p1-8b-instruct")
|
model_name="accounts/fireworks/models/llama-v3p1-8b-instruct")
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -358,16 +359,17 @@ class ChatFireworks(BaseChatModel):
|
|||||||
def build_extra(cls, values: dict[str, Any]) -> Any:
|
def build_extra(cls, values: dict[str, Any]) -> Any:
|
||||||
"""Build extra kwargs from additional params that were passed in."""
|
"""Build extra kwargs from additional params that were passed in."""
|
||||||
all_required_field_names = get_pydantic_field_names(cls)
|
all_required_field_names = get_pydantic_field_names(cls)
|
||||||
values = _build_model_kwargs(values, all_required_field_names)
|
return _build_model_kwargs(values, all_required_field_names)
|
||||||
return values
|
|
||||||
|
|
||||||
@model_validator(mode="after")
|
@model_validator(mode="after")
|
||||||
def validate_environment(self) -> Self:
|
def validate_environment(self) -> Self:
|
||||||
"""Validate that api key and python package exists in environment."""
|
"""Validate that api key and python package exists in environment."""
|
||||||
if self.n < 1:
|
if self.n < 1:
|
||||||
raise ValueError("n must be at least 1.")
|
msg = "n must be at least 1."
|
||||||
|
raise ValueError(msg)
|
||||||
if self.n > 1 and self.streaming:
|
if self.n > 1 and self.streaming:
|
||||||
raise ValueError("n must be 1 when streaming.")
|
msg = "n must be 1 when streaming."
|
||||||
|
raise ValueError(msg)
|
||||||
|
|
||||||
client_params = {
|
client_params = {
|
||||||
"api_key": (
|
"api_key": (
|
||||||
@ -522,7 +524,7 @@ class ChatFireworks(BaseChatModel):
|
|||||||
"output_tokens": token_usage.get("completion_tokens", 0),
|
"output_tokens": token_usage.get("completion_tokens", 0),
|
||||||
"total_tokens": token_usage.get("total_tokens", 0),
|
"total_tokens": token_usage.get("total_tokens", 0),
|
||||||
}
|
}
|
||||||
generation_info = dict(finish_reason=res.get("finish_reason"))
|
generation_info = {"finish_reason": res.get("finish_reason")}
|
||||||
if "logprobs" in res:
|
if "logprobs" in res:
|
||||||
generation_info["logprobs"] = res["logprobs"]
|
generation_info["logprobs"] = res["logprobs"]
|
||||||
gen = ChatGeneration(
|
gen = ChatGeneration(
|
||||||
@ -628,7 +630,7 @@ class ChatFireworks(BaseChatModel):
|
|||||||
self,
|
self,
|
||||||
functions: Sequence[Union[dict[str, Any], type[BaseModel], Callable, BaseTool]],
|
functions: Sequence[Union[dict[str, Any], type[BaseModel], Callable, BaseTool]],
|
||||||
function_call: Optional[
|
function_call: Optional[
|
||||||
Union[_FunctionCall, str, Literal["auto", "none"]]
|
Union[_FunctionCall, str, Literal["auto", "none"]] # noqa: PYI051
|
||||||
] = None,
|
] = None,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||||
@ -651,8 +653,8 @@ class ChatFireworks(BaseChatModel):
|
|||||||
(if any).
|
(if any).
|
||||||
**kwargs: Any additional parameters to pass to the
|
**kwargs: Any additional parameters to pass to the
|
||||||
:class:`~langchain.runnable.Runnable` constructor.
|
:class:`~langchain.runnable.Runnable` constructor.
|
||||||
"""
|
|
||||||
|
|
||||||
|
"""
|
||||||
formatted_functions = [convert_to_openai_function(fn) for fn in functions]
|
formatted_functions = [convert_to_openai_function(fn) for fn in functions]
|
||||||
if function_call is not None:
|
if function_call is not None:
|
||||||
function_call = (
|
function_call = (
|
||||||
@ -662,18 +664,20 @@ class ChatFireworks(BaseChatModel):
|
|||||||
else function_call
|
else function_call
|
||||||
)
|
)
|
||||||
if isinstance(function_call, dict) and len(formatted_functions) != 1:
|
if isinstance(function_call, dict) and len(formatted_functions) != 1:
|
||||||
raise ValueError(
|
msg = (
|
||||||
"When specifying `function_call`, you must provide exactly one "
|
"When specifying `function_call`, you must provide exactly one "
|
||||||
"function."
|
"function."
|
||||||
)
|
)
|
||||||
|
raise ValueError(msg)
|
||||||
if (
|
if (
|
||||||
isinstance(function_call, dict)
|
isinstance(function_call, dict)
|
||||||
and formatted_functions[0]["name"] != function_call["name"]
|
and formatted_functions[0]["name"] != function_call["name"]
|
||||||
):
|
):
|
||||||
raise ValueError(
|
msg = (
|
||||||
f"Function call {function_call} was specified, but the only "
|
f"Function call {function_call} was specified, but the only "
|
||||||
f"provided function was {formatted_functions[0]['name']}."
|
f"provided function was {formatted_functions[0]['name']}."
|
||||||
)
|
)
|
||||||
|
raise ValueError(msg)
|
||||||
kwargs = {**kwargs, "function_call": function_call}
|
kwargs = {**kwargs, "function_call": function_call}
|
||||||
return super().bind(
|
return super().bind(
|
||||||
functions=formatted_functions,
|
functions=formatted_functions,
|
||||||
@ -685,7 +689,7 @@ class ChatFireworks(BaseChatModel):
|
|||||||
tools: Sequence[Union[dict[str, Any], type[BaseModel], Callable, BaseTool]],
|
tools: Sequence[Union[dict[str, Any], type[BaseModel], Callable, BaseTool]],
|
||||||
*,
|
*,
|
||||||
tool_choice: Optional[
|
tool_choice: Optional[
|
||||||
Union[dict, str, Literal["auto", "any", "none"], bool]
|
Union[dict, str, Literal["auto", "any", "none"], bool] # noqa: PYI051
|
||||||
] = None,
|
] = None,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||||
@ -705,8 +709,8 @@ class ChatFireworks(BaseChatModel):
|
|||||||
``{"type": "function", "function": {"name": <<tool_name>>}}``.
|
``{"type": "function", "function": {"name": <<tool_name>>}}``.
|
||||||
**kwargs: Any additional parameters to pass to
|
**kwargs: Any additional parameters to pass to
|
||||||
:meth:`~langchain_fireworks.chat_models.ChatFireworks.bind`
|
:meth:`~langchain_fireworks.chat_models.ChatFireworks.bind`
|
||||||
"""
|
|
||||||
|
|
||||||
|
"""
|
||||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||||
if tool_choice is not None and tool_choice:
|
if tool_choice is not None and tool_choice:
|
||||||
if isinstance(tool_choice, str) and (
|
if isinstance(tool_choice, str) and (
|
||||||
@ -715,10 +719,11 @@ class ChatFireworks(BaseChatModel):
|
|||||||
tool_choice = {"type": "function", "function": {"name": tool_choice}}
|
tool_choice = {"type": "function", "function": {"name": tool_choice}}
|
||||||
if isinstance(tool_choice, bool):
|
if isinstance(tool_choice, bool):
|
||||||
if len(tools) > 1:
|
if len(tools) > 1:
|
||||||
raise ValueError(
|
msg = (
|
||||||
"tool_choice can only be True when there is one tool. Received "
|
"tool_choice can only be True when there is one tool. Received "
|
||||||
f"{len(tools)} tools."
|
f"{len(tools)} tools."
|
||||||
)
|
)
|
||||||
|
raise ValueError(msg)
|
||||||
tool_name = formatted_tools[0]["function"]["name"]
|
tool_name = formatted_tools[0]["function"]["name"]
|
||||||
tool_choice = {
|
tool_choice = {
|
||||||
"type": "function",
|
"type": "function",
|
||||||
@ -779,6 +784,9 @@ class ChatFireworks(BaseChatModel):
|
|||||||
will be caught and returned as well. The final output is always a dict
|
will be caught and returned as well. The final output is always a dict
|
||||||
with keys "raw", "parsed", and "parsing_error".
|
with keys "raw", "parsed", and "parsing_error".
|
||||||
|
|
||||||
|
kwargs:
|
||||||
|
Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
|
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
|
||||||
|
|
||||||
@ -964,17 +972,20 @@ class ChatFireworks(BaseChatModel):
|
|||||||
# },
|
# },
|
||||||
# 'parsing_error': None
|
# 'parsing_error': None
|
||||||
# }
|
# }
|
||||||
|
|
||||||
""" # noqa: E501
|
""" # noqa: E501
|
||||||
_ = kwargs.pop("strict", None)
|
_ = kwargs.pop("strict", None)
|
||||||
if kwargs:
|
if kwargs:
|
||||||
raise ValueError(f"Received unsupported arguments {kwargs}")
|
msg = f"Received unsupported arguments {kwargs}"
|
||||||
|
raise ValueError(msg)
|
||||||
is_pydantic_schema = _is_pydantic_class(schema)
|
is_pydantic_schema = _is_pydantic_class(schema)
|
||||||
if method == "function_calling":
|
if method == "function_calling":
|
||||||
if schema is None:
|
if schema is None:
|
||||||
raise ValueError(
|
msg = (
|
||||||
"schema must be specified when method is 'function_calling'. "
|
"schema must be specified when method is 'function_calling'. "
|
||||||
"Received None."
|
"Received None."
|
||||||
)
|
)
|
||||||
|
raise ValueError(msg)
|
||||||
formatted_tool = convert_to_openai_tool(schema)
|
formatted_tool = convert_to_openai_tool(schema)
|
||||||
tool_name = formatted_tool["function"]["name"]
|
tool_name = formatted_tool["function"]["name"]
|
||||||
llm = self.bind_tools(
|
llm = self.bind_tools(
|
||||||
@ -996,10 +1007,11 @@ class ChatFireworks(BaseChatModel):
|
|||||||
)
|
)
|
||||||
elif method == "json_schema":
|
elif method == "json_schema":
|
||||||
if schema is None:
|
if schema is None:
|
||||||
raise ValueError(
|
msg = (
|
||||||
"schema must be specified when method is 'json_schema'. "
|
"schema must be specified when method is 'json_schema'. "
|
||||||
"Received None."
|
"Received None."
|
||||||
)
|
)
|
||||||
|
raise ValueError(msg)
|
||||||
formatted_schema = convert_to_json_schema(schema)
|
formatted_schema = convert_to_json_schema(schema)
|
||||||
llm = self.bind(
|
llm = self.bind(
|
||||||
response_format={"type": "json_object", "schema": formatted_schema},
|
response_format={"type": "json_object", "schema": formatted_schema},
|
||||||
@ -1027,10 +1039,11 @@ class ChatFireworks(BaseChatModel):
|
|||||||
else JsonOutputParser()
|
else JsonOutputParser()
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
msg = (
|
||||||
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
||||||
f"'json_mode'. Received: '{method}'"
|
f"'json_mode'. Received: '{method}'"
|
||||||
)
|
)
|
||||||
|
raise ValueError(msg)
|
||||||
|
|
||||||
if include_raw:
|
if include_raw:
|
||||||
parser_assign = RunnablePassthrough.assign(
|
parser_assign = RunnablePassthrough.assign(
|
||||||
@ -1041,7 +1054,6 @@ class ChatFireworks(BaseChatModel):
|
|||||||
[parser_none], exception_key="parsing_error"
|
[parser_none], exception_key="parsing_error"
|
||||||
)
|
)
|
||||||
return RunnableMap(raw=llm) | parser_with_fallback
|
return RunnableMap(raw=llm) | parser_with_fallback
|
||||||
else:
|
|
||||||
return llm | output_parser
|
return llm | output_parser
|
||||||
|
|
||||||
|
|
||||||
|
@ -4,8 +4,6 @@ from openai import OpenAI
|
|||||||
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
|
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
|
||||||
from typing_extensions import Self
|
from typing_extensions import Self
|
||||||
|
|
||||||
# type: ignore
|
|
||||||
|
|
||||||
|
|
||||||
class FireworksEmbeddings(BaseModel, Embeddings):
|
class FireworksEmbeddings(BaseModel, Embeddings):
|
||||||
"""Fireworks embedding model integration.
|
"""Fireworks embedding model integration.
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
"""Wrapper around Fireworks AI's Completion API."""
|
"""Wrapper around Fireworks AI's Completion API."""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from typing import Any, Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
@ -95,8 +97,7 @@ class Fireworks(LLM):
|
|||||||
def build_extra(cls, values: dict[str, Any]) -> Any:
|
def build_extra(cls, values: dict[str, Any]) -> Any:
|
||||||
"""Build extra kwargs from additional params that were passed in."""
|
"""Build extra kwargs from additional params that were passed in."""
|
||||||
all_required_field_names = get_pydantic_field_names(cls)
|
all_required_field_names = get_pydantic_field_names(cls)
|
||||||
values = _build_model_kwargs(values, all_required_field_names)
|
return _build_model_kwargs(values, all_required_field_names)
|
||||||
return values
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def _llm_type(self) -> str:
|
def _llm_type(self) -> str:
|
||||||
@ -132,9 +133,13 @@ class Fireworks(LLM):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
prompt: The prompt to pass into the model.
|
prompt: The prompt to pass into the model.
|
||||||
|
stop: Optional list of stop sequences to use.
|
||||||
|
run_manager: (Not used) Optional callback manager for LLM run.
|
||||||
|
kwargs: Additional parameters to pass to the model.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The string generated by the model.
|
The string generated by the model.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
headers = {
|
headers = {
|
||||||
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
||||||
@ -155,19 +160,20 @@ class Fireworks(LLM):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if response.status_code >= 500:
|
if response.status_code >= 500:
|
||||||
raise Exception(f"Fireworks Server: Error {response.status_code}")
|
msg = f"Fireworks Server: Error {response.status_code}"
|
||||||
elif response.status_code >= 400:
|
raise Exception(msg)
|
||||||
raise ValueError(f"Fireworks received an invalid payload: {response.text}")
|
if response.status_code >= 400:
|
||||||
elif response.status_code != 200:
|
msg = f"Fireworks received an invalid payload: {response.text}"
|
||||||
raise Exception(
|
raise ValueError(msg)
|
||||||
|
if response.status_code != 200:
|
||||||
|
msg = (
|
||||||
f"Fireworks returned an unexpected response with status "
|
f"Fireworks returned an unexpected response with status "
|
||||||
f"{response.status_code}: {response.text}"
|
f"{response.status_code}: {response.text}"
|
||||||
)
|
)
|
||||||
|
raise Exception(msg)
|
||||||
|
|
||||||
data = response.json()
|
data = response.json()
|
||||||
output = self._format_output(data)
|
return self._format_output(data)
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
async def _acall(
|
async def _acall(
|
||||||
self,
|
self,
|
||||||
@ -180,9 +186,13 @@ class Fireworks(LLM):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
prompt: The prompt to pass into the model.
|
prompt: The prompt to pass into the model.
|
||||||
|
stop: Optional list of strings to stop generation when encountered.
|
||||||
|
run_manager: (Not used) Optional callback manager for async runs.
|
||||||
|
kwargs: Additional parameters to pass to the model.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The string generated by the model.
|
The string generated by the model.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
headers = {
|
headers = {
|
||||||
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
||||||
@ -198,25 +208,27 @@ class Fireworks(LLM):
|
|||||||
|
|
||||||
# filter None values to not pass them to the http payload
|
# filter None values to not pass them to the http payload
|
||||||
payload = {k: v for k, v in payload.items() if v is not None}
|
payload = {k: v for k, v in payload.items() if v is not None}
|
||||||
async with ClientSession() as session:
|
async with (
|
||||||
async with session.post(
|
ClientSession() as session,
|
||||||
|
session.post(
|
||||||
self.base_url,
|
self.base_url,
|
||||||
json=payload,
|
json=payload,
|
||||||
headers=headers,
|
headers=headers,
|
||||||
timeout=ClientTimeout(total=self.timeout),
|
timeout=ClientTimeout(total=self.timeout),
|
||||||
) as response:
|
) as response,
|
||||||
|
):
|
||||||
if response.status >= 500:
|
if response.status >= 500:
|
||||||
raise Exception(f"Fireworks Server: Error {response.status}")
|
msg = f"Fireworks Server: Error {response.status}"
|
||||||
elif response.status >= 400:
|
raise Exception(msg)
|
||||||
raise ValueError(
|
if response.status >= 400:
|
||||||
f"Fireworks received an invalid payload: {response.text}"
|
msg = f"Fireworks received an invalid payload: {response.text}"
|
||||||
)
|
raise ValueError(msg)
|
||||||
elif response.status != 200:
|
if response.status != 200:
|
||||||
raise Exception(
|
msg = (
|
||||||
f"Fireworks returned an unexpected response with status "
|
f"Fireworks returned an unexpected response with status "
|
||||||
f"{response.status}: {response.text}"
|
f"{response.status}: {response.text}"
|
||||||
)
|
)
|
||||||
|
raise Exception(msg)
|
||||||
|
|
||||||
response_json = await response.json()
|
response_json = await response.json()
|
||||||
output = self._format_output(response_json)
|
return self._format_output(response_json)
|
||||||
return output
|
|
||||||
|
@ -52,8 +52,58 @@ disallow_untyped_defs = "True"
|
|||||||
target-version = "py39"
|
target-version = "py39"
|
||||||
|
|
||||||
[tool.ruff.lint]
|
[tool.ruff.lint]
|
||||||
select = ["E", "F", "I", "T201", "UP", "S"]
|
select = [
|
||||||
ignore = [ "UP007", ]
|
"A", # flake8-builtins
|
||||||
|
"ASYNC", # flake8-async
|
||||||
|
"C4", # flake8-comprehensions
|
||||||
|
"COM", # flake8-commas
|
||||||
|
"D", # pydocstyle
|
||||||
|
"DOC", # pydoclint
|
||||||
|
"E", # pycodestyle error
|
||||||
|
"EM", # flake8-errmsg
|
||||||
|
"F", # pyflakes
|
||||||
|
"FA", # flake8-future-annotations
|
||||||
|
"FBT", # flake8-boolean-trap
|
||||||
|
"FLY", # flake8-flynt
|
||||||
|
"I", # isort
|
||||||
|
"ICN", # flake8-import-conventions
|
||||||
|
"INT", # flake8-gettext
|
||||||
|
"ISC", # isort-comprehensions
|
||||||
|
"PGH", # pygrep-hooks
|
||||||
|
"PIE", # flake8-pie
|
||||||
|
"PERF", # flake8-perf
|
||||||
|
"PYI", # flake8-pyi
|
||||||
|
"Q", # flake8-quotes
|
||||||
|
"RET", # flake8-return
|
||||||
|
"RSE", # flake8-rst-docstrings
|
||||||
|
"RUF", # ruff
|
||||||
|
"S", # flake8-bandit
|
||||||
|
"SLF", # flake8-self
|
||||||
|
"SLOT", # flake8-slots
|
||||||
|
"SIM", # flake8-simplify
|
||||||
|
"T10", # flake8-debugger
|
||||||
|
"T20", # flake8-print
|
||||||
|
"TID", # flake8-tidy-imports
|
||||||
|
"UP", # pyupgrade
|
||||||
|
"W", # pycodestyle warning
|
||||||
|
"YTT", # flake8-2020
|
||||||
|
]
|
||||||
|
ignore = [
|
||||||
|
"D100", # Missing docstring in public module
|
||||||
|
"D101", # Missing docstring in public class
|
||||||
|
"D102", # Missing docstring in public method
|
||||||
|
"D103", # Missing docstring in public function
|
||||||
|
"D104", # Missing docstring in public package
|
||||||
|
"D105", # Missing docstring in magic method
|
||||||
|
"D107", # Missing docstring in __init__
|
||||||
|
"COM812", # Messes with the formatter
|
||||||
|
"ISC001", # Messes with the formatter
|
||||||
|
"PERF203", # Rarely useful
|
||||||
|
"S112", # Rarely useful
|
||||||
|
"RUF012", # Doesn't play well with Pydantic
|
||||||
|
"SLF001", # Private member access
|
||||||
|
"UP007", # pyupgrade: non-pep604-annotation-union
|
||||||
|
]
|
||||||
|
|
||||||
[tool.coverage.run]
|
[tool.coverage.run]
|
||||||
omit = ["tests/*"]
|
omit = ["tests/*"]
|
||||||
|
@ -1,8 +1,10 @@
|
|||||||
"""Test ChatFireworks API wrapper
|
"""Test ChatFireworks API wrapper.
|
||||||
|
|
||||||
You will need FIREWORKS_API_KEY set in your environment to run these tests.
|
You will need FIREWORKS_API_KEY set in your environment to run these tests.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
import json
|
import json
|
||||||
from typing import Annotated, Any, Literal, Optional
|
from typing import Annotated, Any, Literal, Optional
|
||||||
|
|
||||||
@ -18,7 +20,6 @@ _MODEL = "accounts/fireworks/models/llama-v3p1-8b-instruct"
|
|||||||
|
|
||||||
def test_tool_choice_bool() -> None:
|
def test_tool_choice_bool() -> None:
|
||||||
"""Test that tool choice is respected just passing in True."""
|
"""Test that tool choice is respected just passing in True."""
|
||||||
|
|
||||||
llm = ChatFireworks(
|
llm = ChatFireworks(
|
||||||
model="accounts/fireworks/models/llama-v3p1-70b-instruct", temperature=0
|
model="accounts/fireworks/models/llama-v3p1-70b-instruct", temperature=0
|
||||||
)
|
)
|
||||||
@ -59,11 +60,12 @@ async def test_astream() -> None:
|
|||||||
if token.response_metadata:
|
if token.response_metadata:
|
||||||
chunks_with_response_metadata += 1
|
chunks_with_response_metadata += 1
|
||||||
if chunks_with_token_counts != 1 or chunks_with_response_metadata != 1:
|
if chunks_with_token_counts != 1 or chunks_with_response_metadata != 1:
|
||||||
raise AssertionError(
|
msg = (
|
||||||
"Expected exactly one chunk with token counts or response_metadata. "
|
"Expected exactly one chunk with token counts or response_metadata. "
|
||||||
"AIMessageChunk aggregation adds / appends counts and metadata. Check that "
|
"AIMessageChunk aggregation adds / appends counts and metadata. Check that "
|
||||||
"this is behaving properly."
|
"this is behaving properly."
|
||||||
)
|
)
|
||||||
|
raise AssertionError(msg)
|
||||||
assert isinstance(full, AIMessageChunk)
|
assert isinstance(full, AIMessageChunk)
|
||||||
assert full.usage_metadata is not None
|
assert full.usage_metadata is not None
|
||||||
assert full.usage_metadata["input_tokens"] > 0
|
assert full.usage_metadata["input_tokens"] > 0
|
||||||
@ -99,7 +101,7 @@ def test_invoke() -> None:
|
|||||||
"""Test invoke tokens from ChatFireworks."""
|
"""Test invoke tokens from ChatFireworks."""
|
||||||
llm = ChatFireworks(model=_MODEL)
|
llm = ChatFireworks(model=_MODEL)
|
||||||
|
|
||||||
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
result = llm.invoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
||||||
assert isinstance(result.content, str)
|
assert isinstance(result.content, str)
|
||||||
|
|
||||||
|
|
||||||
@ -122,18 +124,18 @@ def _get_joke_class(
|
|||||||
punchline: Annotated[str, ..., "answer to resolve the joke"]
|
punchline: Annotated[str, ..., "answer to resolve the joke"]
|
||||||
|
|
||||||
def validate_joke_dict(result: Any) -> bool:
|
def validate_joke_dict(result: Any) -> bool:
|
||||||
return all(key in ["setup", "punchline"] for key in result.keys())
|
return all(key in ["setup", "punchline"] for key in result)
|
||||||
|
|
||||||
if schema_type == "pydantic":
|
if schema_type == "pydantic":
|
||||||
return Joke, validate_joke
|
return Joke, validate_joke
|
||||||
|
|
||||||
elif schema_type == "typeddict":
|
if schema_type == "typeddict":
|
||||||
return JokeDict, validate_joke_dict
|
return JokeDict, validate_joke_dict
|
||||||
|
|
||||||
elif schema_type == "json_schema":
|
if schema_type == "json_schema":
|
||||||
return Joke.model_json_schema(), validate_joke_dict
|
return Joke.model_json_schema(), validate_joke_dict
|
||||||
else:
|
msg = "Invalid schema type"
|
||||||
raise ValueError("Invalid schema type")
|
raise ValueError(msg)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("schema_type", ["pydantic", "typeddict", "json_schema"])
|
@pytest.mark.parametrize("schema_type", ["pydantic", "typeddict", "json_schema"])
|
||||||
|
@ -4,4 +4,3 @@ import pytest
|
|||||||
@pytest.mark.compile
|
@pytest.mark.compile
|
||||||
def test_placeholder() -> None:
|
def test_placeholder() -> None:
|
||||||
"""Used for compiling integration tests without running any real tests."""
|
"""Used for compiling integration tests without running any real tests."""
|
||||||
pass
|
|
||||||
|
@ -100,5 +100,5 @@ def test_invoke() -> None:
|
|||||||
"""Test invoke tokens from Fireworks."""
|
"""Test invoke tokens from Fireworks."""
|
||||||
llm = Fireworks(model=_MODEL)
|
llm = Fireworks(model=_MODEL)
|
||||||
|
|
||||||
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
result = llm.invoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
||||||
assert isinstance(result, str)
|
assert isinstance(result, str)
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
"""Standard LangChain interface tests"""
|
"""Standard LangChain interface tests."""
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from langchain_core.language_models import BaseChatModel
|
from langchain_core.language_models import BaseChatModel
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
"""Standard LangChain interface tests"""
|
"""Standard LangChain interface tests."""
|
||||||
|
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from langchain_tests.unit_tests.embeddings import EmbeddingsUnitTests
|
from langchain_tests.unit_tests.embeddings import EmbeddingsUnitTests
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
"""Test Fireworks LLM"""
|
"""Test Fireworks LLM."""
|
||||||
|
|
||||||
from typing import cast
|
from typing import cast
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
"""Standard LangChain interface tests"""
|
"""Standard LangChain interface tests."""
|
||||||
|
|
||||||
from langchain_core.language_models import BaseChatModel
|
from langchain_core.language_models import BaseChatModel
|
||||||
from langchain_tests.unit_tests import ( # type: ignore[import-not-found]
|
from langchain_tests.unit_tests import ( # type: ignore[import-not-found]
|
||||||
|
Loading…
Reference in New Issue
Block a user