From 08574848ccf0639effb15a13a0001348ac4cfcd6 Mon Sep 17 00:00:00 2001 From: Chester Curme Date: Thu, 8 May 2025 10:55:08 -0400 Subject: [PATCH] xx --- libs/partners/anthropic/Makefile | 2 +- .../integration_tests/test_chat_models.py | 846 +----------------- 2 files changed, 3 insertions(+), 845 deletions(-) diff --git a/libs/partners/anthropic/Makefile b/libs/partners/anthropic/Makefile index 136c4debc85..6feff86bef5 100644 --- a/libs/partners/anthropic/Makefile +++ b/libs/partners/anthropic/Makefile @@ -14,7 +14,7 @@ test tests: uv run --group test pytest -vvv --disable-socket --allow-unix-socket $(TEST_FILE) integration_test integration_tests: - uv run --group test --group test_integration pytest -vvv --timeout 30 $(TEST_FILE) + uv run --group test --group test_integration pytest -vvv --timeout 30 tests/integration_tests/test_chat_models.py test_watch: uv run --group test ptw --snapshot-update --now . -- -vv $(TEST_FILE) diff --git a/libs/partners/anthropic/tests/integration_tests/test_chat_models.py b/libs/partners/anthropic/tests/integration_tests/test_chat_models.py index af677df668e..9a8ec8ba5e8 100644 --- a/libs/partners/anthropic/tests/integration_tests/test_chat_models.py +++ b/libs/partners/anthropic/tests/integration_tests/test_chat_models.py @@ -1,132 +1,10 @@ """Test ChatAnthropic chat model.""" -import json -from base64 import b64encode -from typing import Optional +from langchain_core.messages import AIMessageChunk -import httpx -import pytest -import requests -from anthropic import BadRequestError -from langchain_core.callbacks import CallbackManager -from langchain_core.exceptions import OutputParserException -from langchain_core.messages import ( - AIMessage, - AIMessageChunk, - BaseMessage, - BaseMessageChunk, - HumanMessage, - SystemMessage, - ToolMessage, -) -from langchain_core.outputs import ChatGeneration, LLMResult -from langchain_core.prompts import ChatPromptTemplate -from langchain_core.tools import tool -from pydantic import BaseModel, Field - -from langchain_anthropic import ChatAnthropic, ChatAnthropicMessages -from tests.unit_tests._utils import FakeCallbackHandler +from langchain_anthropic import ChatAnthropic MODEL_NAME = "claude-3-5-haiku-latest" -IMAGE_MODEL_NAME = "claude-3-5-sonnet-latest" - - -def test_stream() -> None: - """Test streaming tokens from Anthropic.""" - llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg] - - full: Optional[BaseMessageChunk] = None - chunks_with_input_token_counts = 0 - chunks_with_output_token_counts = 0 - chunks_with_model_name = 0 - for token in llm.stream("I'm Pickle Rick"): - assert isinstance(token.content, str) - full = token if full is None else full + token - assert isinstance(token, AIMessageChunk) - if token.usage_metadata is not None: - if token.usage_metadata.get("input_tokens"): - chunks_with_input_token_counts += 1 - if token.usage_metadata.get("output_tokens"): - chunks_with_output_token_counts += 1 - chunks_with_model_name += int("model_name" in token.response_metadata) - if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1: - raise AssertionError( - "Expected exactly one chunk with input or output token counts. " - "AIMessageChunk aggregation adds counts. Check that " - "this is behaving properly." - ) - assert chunks_with_model_name == 1 - # check token usage is populated - assert isinstance(full, AIMessageChunk) - assert full.usage_metadata is not None - assert full.usage_metadata["input_tokens"] > 0 - assert full.usage_metadata["output_tokens"] > 0 - assert full.usage_metadata["total_tokens"] > 0 - assert ( - full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"] - == full.usage_metadata["total_tokens"] - ) - assert "stop_reason" in full.response_metadata - assert "stop_sequence" in full.response_metadata - assert "model_name" in full.response_metadata - - -async def test_astream() -> None: - """Test streaming tokens from Anthropic.""" - llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg] - - full: Optional[BaseMessageChunk] = None - chunks_with_input_token_counts = 0 - chunks_with_output_token_counts = 0 - async for token in llm.astream("I'm Pickle Rick"): - assert isinstance(token.content, str) - full = token if full is None else full + token - assert isinstance(token, AIMessageChunk) - if token.usage_metadata is not None: - if token.usage_metadata.get("input_tokens"): - chunks_with_input_token_counts += 1 - if token.usage_metadata.get("output_tokens"): - chunks_with_output_token_counts += 1 - if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1: - raise AssertionError( - "Expected exactly one chunk with input or output token counts. " - "AIMessageChunk aggregation adds counts. Check that " - "this is behaving properly." - ) - # check token usage is populated - assert isinstance(full, AIMessageChunk) - assert full.usage_metadata is not None - assert full.usage_metadata["input_tokens"] > 0 - assert full.usage_metadata["output_tokens"] > 0 - assert full.usage_metadata["total_tokens"] > 0 - assert ( - full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"] - == full.usage_metadata["total_tokens"] - ) - assert "stop_reason" in full.response_metadata - assert "stop_sequence" in full.response_metadata - - # Check expected raw API output - async_client = llm._async_client - params: dict = { - "model": MODEL_NAME, - "max_tokens": 1024, - "messages": [{"role": "user", "content": "hi"}], - "temperature": 0.0, - } - stream = await async_client.messages.create(**params, stream=True) - async for event in stream: - if event.type == "message_start": - assert event.message.usage.input_tokens > 1 - # Note: this single output token included in message start event - # does not appear to contribute to overall output token counts. It - # is excluded from the total token count. - assert event.message.usage.output_tokens == 1 - elif event.type == "message_delta": - assert event.usage.output_tokens > 1 - else: - pass - async def test_stream_usage() -> None: model = ChatAnthropic(model_name=MODEL_NAME, stream_usage=False) # type: ignore[call-arg] @@ -154,723 +32,3 @@ async def test_async_stream_twice() -> None: async for token in model.astream("hi", stream_usage=False): assert isinstance(token, AIMessageChunk) assert token.usage_metadata is None - - -async def test_abatch() -> None: - """Test streaming tokens from ChatAnthropicMessages.""" - llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg] - - result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) - for token in result: - assert isinstance(token.content, str) - - -async def test_abatch_tags() -> None: - """Test batch tokens from ChatAnthropicMessages.""" - llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg] - - result = await llm.abatch( - ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} - ) - for token in result: - assert isinstance(token.content, str) - - -async def test_async_tool_use() -> None: - llm = ChatAnthropic( - model=MODEL_NAME, - ) - - llm_with_tools = llm.bind_tools( - [ - { - "name": "get_weather", - "description": "Get weather report for a city", - "input_schema": { - "type": "object", - "properties": {"location": {"type": "string"}}, - }, - } - ] - ) - response = await llm_with_tools.ainvoke("what's the weather in san francisco, ca") - assert isinstance(response, AIMessage) - assert isinstance(response.content, list) - assert isinstance(response.tool_calls, list) - assert len(response.tool_calls) == 1 - tool_call = response.tool_calls[0] - assert tool_call["name"] == "get_weather" - assert isinstance(tool_call["args"], dict) - assert "location" in tool_call["args"] - - # Test streaming - first = True - chunks = [] # type: ignore - async for chunk in llm_with_tools.astream( - "what's the weather in san francisco, ca" - ): - chunks = chunks + [chunk] - if first: - gathered = chunk - first = False - else: - gathered = gathered + chunk # type: ignore - assert len(chunks) > 1 - assert isinstance(gathered, AIMessageChunk) - assert isinstance(gathered.tool_call_chunks, list) - assert len(gathered.tool_call_chunks) == 1 - tool_call_chunk = gathered.tool_call_chunks[0] - assert tool_call_chunk["name"] == "get_weather" - assert isinstance(tool_call_chunk["args"], str) - assert "location" in json.loads(tool_call_chunk["args"]) - - -def test_batch() -> None: - """Test batch tokens from ChatAnthropicMessages.""" - llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg] - - result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) - for token in result: - assert isinstance(token.content, str) - - -async def test_ainvoke() -> None: - """Test invoke tokens from ChatAnthropicMessages.""" - llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg] - - result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) - assert isinstance(result.content, str) - assert "model_name" in result.response_metadata - - -def test_invoke() -> None: - """Test invoke tokens from ChatAnthropicMessages.""" - llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg] - - result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) - assert isinstance(result.content, str) - - -def test_system_invoke() -> None: - """Test invoke tokens with a system message""" - llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg] - - prompt = ChatPromptTemplate.from_messages( - [ - ( - "system", - "You are an expert cartographer. If asked, you are a cartographer. " - "STAY IN CHARACTER", - ), - ("human", "Are you a mathematician?"), - ] - ) - - chain = prompt | llm - - result = chain.invoke({}) - assert isinstance(result.content, str) - - -def test_anthropic_call() -> None: - """Test valid call to anthropic.""" - chat = ChatAnthropic(model=MODEL_NAME) - message = HumanMessage(content="Hello") - response = chat.invoke([message]) - assert isinstance(response, AIMessage) - assert isinstance(response.content, str) - - -def test_anthropic_generate() -> None: - """Test generate method of anthropic.""" - chat = ChatAnthropic(model=MODEL_NAME) - chat_messages: list[list[BaseMessage]] = [ - [HumanMessage(content="How many toes do dogs have?")] - ] - messages_copy = [messages.copy() for messages in chat_messages] - result: LLMResult = chat.generate(chat_messages) - assert isinstance(result, LLMResult) - for response in result.generations[0]: - assert isinstance(response, ChatGeneration) - assert isinstance(response.text, str) - assert response.text == response.message.content - assert chat_messages == messages_copy - - -def test_anthropic_streaming() -> None: - """Test streaming tokens from anthropic.""" - chat = ChatAnthropic(model=MODEL_NAME) - message = HumanMessage(content="Hello") - response = chat.stream([message]) - for token in response: - assert isinstance(token, AIMessageChunk) - assert isinstance(token.content, str) - - -def test_anthropic_streaming_callback() -> None: - """Test that streaming correctly invokes on_llm_new_token callback.""" - callback_handler = FakeCallbackHandler() - callback_manager = CallbackManager([callback_handler]) - chat = ChatAnthropic( - model=MODEL_NAME, - callback_manager=callback_manager, - verbose=True, - ) - message = HumanMessage(content="Write me a sentence with 10 words.") - for token in chat.stream([message]): - assert isinstance(token, AIMessageChunk) - assert isinstance(token.content, str) - assert callback_handler.llm_streams > 1 - - -async def test_anthropic_async_streaming_callback() -> None: - """Test that streaming correctly invokes on_llm_new_token callback.""" - callback_handler = FakeCallbackHandler() - callback_manager = CallbackManager([callback_handler]) - chat = ChatAnthropic( - model=MODEL_NAME, - callback_manager=callback_manager, - verbose=True, - ) - chat_messages: list[BaseMessage] = [ - HumanMessage(content="How many toes do dogs have?") - ] - async for token in chat.astream(chat_messages): - assert isinstance(token, AIMessageChunk) - assert isinstance(token.content, str) - assert callback_handler.llm_streams > 1 - - -def test_anthropic_multimodal() -> None: - """Test that multimodal inputs are handled correctly.""" - chat = ChatAnthropic(model=IMAGE_MODEL_NAME) - messages: list[BaseMessage] = [ - HumanMessage( - content=[ - { - "type": "image_url", - "image_url": { - # langchain logo - "url": "", # noqa: E501 - }, - }, - {"type": "text", "text": "What is this a logo for?"}, - ] - ) - ] - response = chat.invoke(messages) - assert isinstance(response, AIMessage) - assert isinstance(response.content, str) - num_tokens = chat.get_num_tokens_from_messages(messages) - assert num_tokens > 0 - - -def test_streaming() -> None: - """Test streaming tokens from Anthropic.""" - callback_handler = FakeCallbackHandler() - callback_manager = CallbackManager([callback_handler]) - - llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg] - model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager - ) - - response = llm.generate([[HumanMessage(content="I'm Pickle Rick")]]) - assert callback_handler.llm_streams > 0 - assert isinstance(response, LLMResult) - - -async def test_astreaming() -> None: - """Test streaming tokens from Anthropic.""" - callback_handler = FakeCallbackHandler() - callback_manager = CallbackManager([callback_handler]) - - llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg] - model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager - ) - - response = await llm.agenerate([[HumanMessage(content="I'm Pickle Rick")]]) - assert callback_handler.llm_streams > 0 - assert isinstance(response, LLMResult) - - -def test_tool_use() -> None: - llm = ChatAnthropic( - model="claude-3-7-sonnet-20250219", - temperature=0, - ) - tool_definition = { - "name": "get_weather", - "description": "Get weather report for a city", - "input_schema": { - "type": "object", - "properties": {"location": {"type": "string"}}, - }, - } - llm_with_tools = llm.bind_tools([tool_definition]) - query = "how are you? what's the weather in san francisco, ca" - response = llm_with_tools.invoke(query) - assert isinstance(response, AIMessage) - assert isinstance(response.content, list) - assert isinstance(response.tool_calls, list) - assert len(response.tool_calls) == 1 - tool_call = response.tool_calls[0] - assert tool_call["name"] == "get_weather" - assert isinstance(tool_call["args"], dict) - assert "location" in tool_call["args"] - - # Test streaming - llm = ChatAnthropic( - model="claude-3-7-sonnet-20250219", - temperature=0, - # Add extra headers to also test token-efficient tools - model_kwargs={ - "extra_headers": {"anthropic-beta": "token-efficient-tools-2025-02-19"} - }, - ) - llm_with_tools = llm.bind_tools([tool_definition]) - first = True - chunks = [] # type: ignore - for chunk in llm_with_tools.stream(query): - chunks = chunks + [chunk] - if first: - gathered = chunk - first = False - else: - gathered = gathered + chunk # type: ignore - assert len(chunks) > 1 - assert isinstance(gathered.content, list) - assert len(gathered.content) == 2 - tool_use_block = None - for content_block in gathered.content: - assert isinstance(content_block, dict) - if content_block["type"] == "tool_use": - tool_use_block = content_block - break - assert tool_use_block is not None - assert tool_use_block["name"] == "get_weather" - assert "location" in json.loads(tool_use_block["partial_json"]) - assert isinstance(gathered, AIMessageChunk) - assert isinstance(gathered.tool_calls, list) - assert len(gathered.tool_calls) == 1 - tool_call = gathered.tool_calls[0] - assert tool_call["name"] == "get_weather" - assert isinstance(tool_call["args"], dict) - assert "location" in tool_call["args"] - assert tool_call["id"] is not None - - # Testing token-efficient tools - # https://docs.anthropic.com/en/docs/build-with-claude/tool-use/token-efficient-tool-use - assert gathered.usage_metadata - assert response.usage_metadata - assert ( - gathered.usage_metadata["total_tokens"] - < response.usage_metadata["total_tokens"] - ) - - # Test passing response back to model - stream = llm_with_tools.stream( - [ - query, - gathered, - ToolMessage(content="sunny and warm", tool_call_id=tool_call["id"]), - ] - ) - chunks = [] # type: ignore - first = True - for chunk in stream: - chunks = chunks + [chunk] - if first: - gathered = chunk - first = False - else: - gathered = gathered + chunk # type: ignore - assert len(chunks) > 1 - - -def test_builtin_tools() -> None: - llm = ChatAnthropic(model="claude-3-7-sonnet-20250219") - tool = {"type": "text_editor_20250124", "name": "str_replace_editor"} - llm_with_tools = llm.bind_tools([tool]) - response = llm_with_tools.invoke( - "There's a syntax error in my primes.py file. Can you help me fix it?" - ) - assert isinstance(response, AIMessage) - assert response.tool_calls - - -class GenerateUsername(BaseModel): - "Get a username based on someone's name and hair color." - - name: str - hair_color: str - - -def test_disable_parallel_tool_calling() -> None: - llm = ChatAnthropic(model="claude-3-5-sonnet-20241022") - llm_with_tools = llm.bind_tools([GenerateUsername], parallel_tool_calls=False) - result = llm_with_tools.invoke( - "Use the GenerateUsername tool to generate user names for:\n\n" - "Sally with green hair\n" - "Bob with blue hair" - ) - assert isinstance(result, AIMessage) - assert len(result.tool_calls) == 1 - - -def test_anthropic_with_empty_text_block() -> None: - """Anthropic SDK can return an empty text block.""" - - @tool - def type_letter(letter: str) -> str: - """Type the given letter.""" - return "OK" - - model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0).bind_tools( - [type_letter] - ) - - messages = [ - SystemMessage( - content="Repeat the given string using the provided tools. Do not write " - "anything else or provide any explanations. For example, " - "if the string is 'abc', you must print the " - "letters 'a', 'b', and 'c' one at a time and in that order. " - ), - HumanMessage(content="dog"), - AIMessage( - content=[ - {"text": "", "type": "text"}, - { - "id": "toolu_01V6d6W32QGGSmQm4BT98EKk", - "input": {"letter": "d"}, - "name": "type_letter", - "type": "tool_use", - }, - ], - tool_calls=[ - { - "name": "type_letter", - "args": {"letter": "d"}, - "id": "toolu_01V6d6W32QGGSmQm4BT98EKk", - "type": "tool_call", - }, - ], - ), - ToolMessage(content="OK", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"), - ] - - model.invoke(messages) - - -def test_with_structured_output() -> None: - llm = ChatAnthropic( - model="claude-3-opus-20240229", - ) - - structured_llm = llm.with_structured_output( - { - "name": "get_weather", - "description": "Get weather report for a city", - "input_schema": { - "type": "object", - "properties": {"location": {"type": "string"}}, - }, - } - ) - response = structured_llm.invoke("what's the weather in san francisco, ca") - assert isinstance(response, dict) - assert response["location"] - - -def test_get_num_tokens_from_messages() -> None: - llm = ChatAnthropic(model="claude-3-5-sonnet-20241022") - - # Test simple case - messages = [ - SystemMessage(content="You are a scientist"), - HumanMessage(content="Hello, Claude"), - ] - num_tokens = llm.get_num_tokens_from_messages(messages) - assert num_tokens > 0 - - # Test tool use - @tool(parse_docstring=True) - def get_weather(location: str) -> str: - """Get the current weather in a given location - - Args: - location: The city and state, e.g. San Francisco, CA - """ - return "Sunny" - - messages = [ - HumanMessage(content="What's the weather like in San Francisco?"), - ] - num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather]) - assert num_tokens > 0 - - messages = [ - HumanMessage(content="What's the weather like in San Francisco?"), - AIMessage( - content=[ - {"text": "Let's see.", "type": "text"}, - { - "id": "toolu_01V6d6W32QGGSmQm4BT98EKk", - "input": {"location": "SF"}, - "name": "get_weather", - "type": "tool_use", - }, - ], - tool_calls=[ - { - "name": "get_weather", - "args": {"location": "SF"}, - "id": "toolu_01V6d6W32QGGSmQm4BT98EKk", - "type": "tool_call", - }, - ], - ), - ToolMessage(content="Sunny", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"), - ] - num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather]) - assert num_tokens > 0 - - -class GetWeather(BaseModel): - """Get the current weather in a given location""" - - location: str = Field(..., description="The city and state, e.g. San Francisco, CA") - - -@pytest.mark.parametrize("tool_choice", ["GetWeather", "auto", "any"]) -def test_anthropic_bind_tools_tool_choice(tool_choice: str) -> None: - chat_model = ChatAnthropic( - model=MODEL_NAME, - ) - chat_model_with_tools = chat_model.bind_tools([GetWeather], tool_choice=tool_choice) - response = chat_model_with_tools.invoke("what's the weather in ny and la") - assert isinstance(response, AIMessage) - - -def test_pdf_document_input() -> None: - url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf" - data = b64encode(requests.get(url).content).decode() - - result = ChatAnthropic(model=IMAGE_MODEL_NAME).invoke( - [ - HumanMessage( - [ - "summarize this document", - { - "type": "document", - "source": { - "type": "base64", - "data": data, - "media_type": "application/pdf", - }, - }, - ] - ) - ] - ) - assert isinstance(result, AIMessage) - assert isinstance(result.content, str) - assert len(result.content) > 0 - - -def test_citations() -> None: - llm = ChatAnthropic(model="claude-3-5-haiku-latest") - messages = [ - { - "role": "user", - "content": [ - { - "type": "document", - "source": { - "type": "content", - "content": [ - {"type": "text", "text": "The grass is green"}, - {"type": "text", "text": "The sky is blue"}, - ], - }, - "citations": {"enabled": True}, - }, - {"type": "text", "text": "What color is the grass and sky?"}, - ], - } - ] - response = llm.invoke(messages) - assert isinstance(response, AIMessage) - assert isinstance(response.content, list) - assert any("citations" in block for block in response.content) - - # Test streaming - full: Optional[BaseMessageChunk] = None - for chunk in llm.stream(messages): - full = chunk if full is None else full + chunk - assert isinstance(full, AIMessageChunk) - assert isinstance(full.content, list) - assert any("citations" in block for block in full.content) - assert not any("citation" in block for block in full.content) - - -def test_thinking() -> None: - llm = ChatAnthropic( - model="claude-3-7-sonnet-latest", - max_tokens=5_000, - thinking={"type": "enabled", "budget_tokens": 2_000}, - ) - response = llm.invoke("Hello") - assert any("thinking" in block for block in response.content) - for block in response.content: - assert isinstance(block, dict) - if block["type"] == "thinking": - assert set(block.keys()) == {"type", "thinking", "signature"} - assert block["thinking"] and isinstance(block["thinking"], str) - assert block["signature"] and isinstance(block["signature"], str) - - # Test streaming - full: Optional[BaseMessageChunk] = None - for chunk in llm.stream("Hello"): - full = chunk if full is None else full + chunk - assert isinstance(full, AIMessageChunk) - assert isinstance(full.content, list) - assert any("thinking" in block for block in full.content) - for block in full.content: - assert isinstance(block, dict) - if block["type"] == "thinking": - assert set(block.keys()) == {"type", "thinking", "signature", "index"} - assert block["thinking"] and isinstance(block["thinking"], str) - assert block["signature"] and isinstance(block["signature"], str) - - -@pytest.mark.flaky(retries=3, delay=1) -def test_redacted_thinking() -> None: - llm = ChatAnthropic( - model="claude-3-7-sonnet-latest", - max_tokens=5_000, - thinking={"type": "enabled", "budget_tokens": 2_000}, - ) - query = "ANTHROPIC_MAGIC_STRING_TRIGGER_REDACTED_THINKING_46C9A13E193C177646C7398A98432ECCCE4C1253D5E2D82641AC0E52CC2876CB" # noqa: E501 - - response = llm.invoke(query) - has_reasoning = False - for block in response.content: - assert isinstance(block, dict) - if block["type"] == "redacted_thinking": - has_reasoning = True - assert set(block.keys()) == {"type", "data"} - assert block["data"] and isinstance(block["data"], str) - assert has_reasoning - - # Test streaming - full: Optional[BaseMessageChunk] = None - for chunk in llm.stream(query): - full = chunk if full is None else full + chunk - assert isinstance(full, AIMessageChunk) - assert isinstance(full.content, list) - stream_has_reasoning = False - for block in full.content: - assert isinstance(block, dict) - if block["type"] == "redacted_thinking": - stream_has_reasoning = True - assert set(block.keys()) == {"type", "data", "index"} - assert block["data"] and isinstance(block["data"], str) - assert stream_has_reasoning - - -def test_structured_output_thinking_enabled() -> None: - llm = ChatAnthropic( - model="claude-3-7-sonnet-latest", - max_tokens=5_000, - thinking={"type": "enabled", "budget_tokens": 2_000}, - ) - with pytest.warns(match="structured output"): - structured_llm = llm.with_structured_output(GenerateUsername) - query = "Generate a username for Sally with green hair" - response = structured_llm.invoke(query) - assert isinstance(response, GenerateUsername) - - with pytest.raises(OutputParserException): - structured_llm.invoke("Hello") - - # Test streaming - for chunk in structured_llm.stream(query): - assert isinstance(chunk, GenerateUsername) - - -def test_structured_output_thinking_force_tool_use() -> None: - # Structured output currently relies on forced tool use, which is not supported - # when `thinking` is enabled. When this test fails, it means that the feature - # is supported and the workarounds in `with_structured_output` should be removed. - llm = ChatAnthropic( - model="claude-3-7-sonnet-latest", - max_tokens=5_000, - thinking={"type": "enabled", "budget_tokens": 2_000}, - ).bind_tools( - [GenerateUsername], - tool_choice="GenerateUsername", - ) - with pytest.raises(BadRequestError): - llm.invoke("Generate a username for Sally with green hair") - - -def test_image_tool_calling() -> None: - """Test tool calling with image inputs.""" - - class color_picker(BaseModel): - """Input your fav color and get a random fact about it.""" - - fav_color: str - - human_content: list[dict] = [ - { - "type": "text", - "text": "what's your favorite color in this image", - }, - ] - image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" - image_data = b64encode(httpx.get(image_url).content).decode("utf-8") - human_content.append( - { - "type": "image", - "source": { - "type": "base64", - "media_type": "image/jpeg", - "data": image_data, - }, - } - ) - messages = [ - SystemMessage("you're a good assistant"), - HumanMessage(human_content), # type: ignore[arg-type] - AIMessage( - [ - {"type": "text", "text": "Hmm let me think about that"}, - { - "type": "tool_use", - "input": {"fav_color": "green"}, - "id": "foo", - "name": "color_picker", - }, - ] - ), - HumanMessage( - [ - { - "type": "tool_result", - "tool_use_id": "foo", - "content": [ - { - "type": "text", - "text": "green is a great pick! that's my sister's favorite color", # noqa: E501 - } - ], - "is_error": False, - }, - {"type": "text", "text": "what's my sister's favorite color"}, - ] - ), - ] - llm = ChatAnthropic(model="claude-3-5-sonnet-latest") - llm.bind_tools([color_picker]).invoke(messages)