mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 19:12:42 +00:00
Add add_example method to all ExampleSelector classes, with tests (#178)
Also updated docs, and noticed an issue with the add_texts method on VectorStores that I had missed before -- the metadatas arg should be required to match the classmethod which initializes the VectorStores (the add_example methods break otherwise in the ExampleSelectors)
This commit is contained in:
committed by
GitHub
parent
780ef84cf0
commit
09f301cd38
@@ -310,7 +310,7 @@
|
||||
" example_prompt=example_prompt, \n",
|
||||
" # This is the maximum length that the formatted examples should be.\n",
|
||||
" # Length is measured by the get_text_length function below.\n",
|
||||
" max_length=18,\n",
|
||||
" max_length=25,\n",
|
||||
" # This is the function used to get the length of a string, which is used\n",
|
||||
" # to determine which examples to include. It is commented out because\n",
|
||||
" # it is provided as a default value if none is specified.\n",
|
||||
@@ -378,17 +378,59 @@
|
||||
"Input: happy\n",
|
||||
"Output: sad\n",
|
||||
"\n",
|
||||
"Input: big and huge and massive and large and gigantic and tall and bigger than everything else\n",
|
||||
"Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else\n",
|
||||
"Output:\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# An example with long input, so it selects only one example.\n",
|
||||
"long_string = \"big and huge and massive and large and gigantic and tall and bigger than everything else\"\n",
|
||||
"long_string = \"big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else\"\n",
|
||||
"print(dynamic_prompt.format(adjective=long_string))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "e4bebcd9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Give the antonym of every input\n",
|
||||
"\n",
|
||||
"Input: happy\n",
|
||||
"Output: sad\n",
|
||||
"\n",
|
||||
"Input: tall\n",
|
||||
"Output: short\n",
|
||||
"\n",
|
||||
"Input: energetic\n",
|
||||
"Output: lethargic\n",
|
||||
"\n",
|
||||
"Input: sunny\n",
|
||||
"Output: gloomy\n",
|
||||
"\n",
|
||||
"Input: windy\n",
|
||||
"Output: calm\n",
|
||||
"\n",
|
||||
"Input: big\n",
|
||||
"Output: small\n",
|
||||
"\n",
|
||||
"Input: enthusiastic\n",
|
||||
"Output:\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# You can add an example to an example selector as well.\n",
|
||||
"new_example = {\"input\": \"big\", \"output\": \"small\"}\n",
|
||||
"dynamic_prompt.example_selector.add_example(new_example)\n",
|
||||
"print(dynamic_prompt.format(adjective=\"enthusiastic\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2d007b0a",
|
||||
@@ -401,7 +443,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 14,
|
||||
"id": "241bfe80",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -413,7 +455,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 15,
|
||||
"id": "50d0a701",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -440,7 +482,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"execution_count": 16,
|
||||
"id": "4c8fdf45",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -465,9 +507,11 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 17,
|
||||
"id": "829af21a",
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
@@ -484,10 +528,36 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Input is a measurment, so should select the tall/short example\n",
|
||||
"# Input is a measurement, so should select the tall/short example\n",
|
||||
"print(similar_prompt.format(adjective=\"fat\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "3c16fe23",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Give the antonym of every input\n",
|
||||
"\n",
|
||||
"Input: enthusiastic\n",
|
||||
"Output: apathetic\n",
|
||||
"\n",
|
||||
"Input: joyful\n",
|
||||
"Output:\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# You can add new examples to the SemanticSimilarityExampleSelector as well\n",
|
||||
"similar_prompt.example_selector.add_example({\"input\": \"enthusiastic\", \"output\": \"apathetic\"})\n",
|
||||
"print(similar_prompt.format(adjective=\"joyful\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "dbc32551",
|
||||
@@ -532,7 +602,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6"
|
||||
"version": "3.10.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
Reference in New Issue
Block a user