Refactor: use SecretStr for PipelineAI llms (#15120)

This commit is contained in:
chyroc 2023-12-27 05:00:58 +08:00 committed by GitHub
parent d63ceb65b3
commit 0a9a73a9c9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 31 additions and 6 deletions

View File

@ -3,8 +3,14 @@ from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.utils import get_from_dict_or_env
from langchain_core.pydantic_v1 import (
BaseModel,
Extra,
Field,
SecretStr,
root_validator,
)
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_community.llms.utils import enforce_stop_tokens
@ -34,7 +40,7 @@ class PipelineAI(LLM, BaseModel):
"""Holds any pipeline parameters valid for `create` call not
explicitly specified."""
pipeline_api_key: Optional[str] = None
pipeline_api_key: Optional[SecretStr] = None
class Config:
"""Configuration for this pydantic config."""
@ -62,8 +68,8 @@ class PipelineAI(LLM, BaseModel):
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
pipeline_api_key = get_from_dict_or_env(
values, "pipeline_api_key", "PIPELINE_API_KEY"
pipeline_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "pipeline_api_key", "PIPELINE_API_KEY")
)
values["pipeline_api_key"] = pipeline_api_key
return values
@ -96,7 +102,7 @@ class PipelineAI(LLM, BaseModel):
"Could not import pipeline-ai python package. "
"Please install it with `pip install pipeline-ai`."
)
client = PipelineCloud(token=self.pipeline_api_key)
client = PipelineCloud(token=self.pipeline_api_key.get_secret_value())
params = self.pipeline_kwargs or {}
params = {**params, **kwargs}

View File

@ -0,0 +1,19 @@
from langchain_core.pydantic_v1 import SecretStr
from pytest import CaptureFixture
from langchain_community.llms.pipelineai import PipelineAI
def test_api_key_is_string() -> None:
llm = PipelineAI(pipeline_api_key="secret-api-key")
assert isinstance(llm.pipeline_api_key, SecretStr)
def test_api_key_masked_when_passed_via_constructor(
capsys: CaptureFixture,
) -> None:
llm = PipelineAI(pipeline_api_key="secret-api-key")
print(llm.pipeline_api_key, end="")
captured = capsys.readouterr()
assert captured.out == "**********"