diff --git a/templates/rag-pinecone-multi-query/README.md b/templates/rag-pinecone-multi-query/README.md index b56a5eda318..a8968d2a018 100644 --- a/templates/rag-pinecone-multi-query/README.md +++ b/templates/rag-pinecone-multi-query/README.md @@ -14,3 +14,38 @@ This template uses Pinecone as a vectorstore and requires that `PINECONE_API_KEY Be sure that `OPENAI_API_KEY` is set in order to the OpenAI models. +## App + +Example `server.py`: +``` +from fastapi import FastAPI +from langserve import add_routes +from rag_pinecone_multi_query.chain import chain + +app = FastAPI() + +# Edit this to add the chain you want to add +add_routes(app, chain, path="rag_pinecone_multi_query") + +if __name__ == "__main__": + import uvicorn + + uvicorn.run(app, host="0.0.0.0", port=8001) +``` + +Run: +``` +python app/server.py +``` + +Check endpoint: +``` +http://0.0.0.0:8001/docs +``` + +See `rag_pinecone_multi_query.ipynb` for example usage - +``` +from langserve.client import RemoteRunnable +rag_app_pinecone = RemoteRunnable('http://0.0.0.0:8001/rag_pinecone_multi_query') +rag_app_pinecone.invoke("What are the different types of agent memory") +``` \ No newline at end of file diff --git a/templates/rag-pinecone-multi-query/rag_pinecone.ipynb b/templates/rag-pinecone-multi-query/rag_pinecone_multi_query.ipynb similarity index 64% rename from templates/rag-pinecone-multi-query/rag_pinecone.ipynb rename to templates/rag-pinecone-multi-query/rag_pinecone_multi_query.ipynb index ddd76054750..cdf8f590824 100644 --- a/templates/rag-pinecone-multi-query/rag_pinecone.ipynb +++ b/templates/rag-pinecone-multi-query/rag_pinecone_multi_query.ipynb @@ -11,13 +11,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "d774be2a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'The different types of agent memory mentioned in the context are short-term memory, long-term memory, explicit/declarative memory, and implicit/procedural memory.'" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from langserve.client import RemoteRunnable\n", - "rag_app_pinecone = RemoteRunnable('http://localhost:8000/rag-pinecone-multi-query')\n", + "rag_app_pinecone = RemoteRunnable('http://0.0.0.0:8001/rag_pinecone_multi_query')\n", "rag_app_pinecone.invoke(\"What are the different types of agent memory\")" ] }