mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-24 20:09:01 +00:00
Harrison/quadrant (#665)
Co-authored-by: Kacper Łukawski <kacperlukawski@users.noreply.github.com>
This commit is contained in:
57
tests/integration_tests/vectorstores/test_qdrant.py
Normal file
57
tests/integration_tests/vectorstores/test_qdrant.py
Normal file
@@ -0,0 +1,57 @@
|
||||
"""Test Qdrant functionality."""
|
||||
from typing import List
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.vectorstores import Qdrant
|
||||
|
||||
|
||||
class FakeEmbeddings(Embeddings):
|
||||
"""Fake embeddings functionality for testing."""
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Return simple embeddings."""
|
||||
return [[1.0] * 9 + [float(i)] for i in range(len(texts))]
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Return simple embeddings."""
|
||||
return [1.0] * 9 + [0.0]
|
||||
|
||||
|
||||
def test_qdrant() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = Qdrant.from_texts(texts, FakeEmbeddings(), host="localhost")
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_qdrant_with_metadatas() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": i} for i in range(len(texts))]
|
||||
docsearch = Qdrant.from_texts(
|
||||
texts,
|
||||
FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
host="localhost",
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"page": 0})]
|
||||
|
||||
|
||||
def test_qdrant_max_marginal_relevance_search() -> None:
|
||||
"""Test end to end construction and MRR search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": i} for i in range(len(texts))]
|
||||
docsearch = Qdrant.from_texts(
|
||||
texts,
|
||||
FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
host="localhost",
|
||||
)
|
||||
output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": 0}),
|
||||
Document(page_content="bar", metadata={"page": 1}),
|
||||
]
|
Reference in New Issue
Block a user