mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-10 07:21:03 +00:00
Harrison/pgvector (#1679)
Co-authored-by: Aman Kumar <krsingh.aman@gmail.com>
This commit is contained in:
81
tests/integration_tests/vectorstores/test_pgvector.py
Normal file
81
tests/integration_tests/vectorstores/test_pgvector.py
Normal file
@@ -0,0 +1,81 @@
|
||||
"""Test PGVector functionality."""
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.vectorstores.pgvector import PGVector
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import (
|
||||
FakeEmbeddings,
|
||||
)
|
||||
|
||||
CONNECTION_STRING = PGVector.connection_string_from_db_params(
|
||||
driver=os.environ.get("TEST_PGVECTOR_DRIVER", "psycopg2"),
|
||||
host=os.environ.get("TEST_PGVECTOR_HOST", "localhost"),
|
||||
port=int(os.environ.get("TEST_PGVECTOR_PORT", "5432")),
|
||||
database=os.environ.get("TEST_PGVECTOR_DATABASE", "postgres"),
|
||||
user=os.environ.get("TEST_PGVECTOR_USER", "postgres"),
|
||||
password=os.environ.get("TEST_PGVECTOR_PASSWORD", "postgres"),
|
||||
)
|
||||
|
||||
|
||||
ADA_TOKEN_COUNT = 1536
|
||||
|
||||
|
||||
class FakeEmbeddingsWithAdaDimension(FakeEmbeddings):
|
||||
"""Fake embeddings functionality for testing."""
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Return simple embeddings."""
|
||||
return [
|
||||
[float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(i)] for i in range(len(texts))
|
||||
]
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Return simple embeddings."""
|
||||
return [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(0.0)]
|
||||
|
||||
|
||||
def test_pgvector() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = PGVector.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_pgvector_with_metadatas() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = PGVector.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"page": "0"})]
|
||||
|
||||
|
||||
def test_pgvector_with_metadatas_with_scores() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = PGVector.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search_with_score("foo", k=1)
|
||||
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
Reference in New Issue
Block a user