docs: Standardize QianfanLLMEndpoint LLM (#25139)

- **Description:** Standardize QianfanLLMEndpoint LLM,include:
  - docs, the issue #24803 
  - model init arg names, the issue #20085
This commit is contained in:
maang-h 2024-08-07 22:57:27 +08:00 committed by GitHub
parent 28e0958ff4
commit 0ba125c3cd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 109 additions and 16 deletions

View File

@ -23,22 +23,102 @@ logger = logging.getLogger(__name__)
class QianfanLLMEndpoint(LLM):
"""Baidu Qianfan hosted open source or customized models.
"""Baidu Qianfan completion model integration.
To use, you should have the ``qianfan`` python package installed, and
the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with
your API key and Secret Key.
Setup:
Install ``qianfan`` and set environment variables ``QIANFAN_AK``, ``QIANFAN_SK``.
ak, sk are required parameters which you could get from
https://cloud.baidu.com/product/wenxinworkshop
.. code-block:: bash
Example:
pip install qianfan
export QIANFAN_AK="your-api-key"
export QIANFAN_SK="your-secret_key"
Key init args completion params:
model: str
Name of Qianfan model to use.
temperature: Optional[float]
Sampling temperature.
endpoint: Optional[str]
Endpoint of the Qianfan LLM
top_p: Optional[float]
What probability mass to use.
Key init args client params:
timeout: Optional[int]
Timeout for requests.
api_key: Optional[str]
Qianfan API KEY. If not passed in will be read from env var QIANFAN_AK.
secret_key: Optional[str]
Qianfan SECRET KEY. If not passed in will be read from env var QIANFAN_SK.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_community.llms import QianfanLLMEndpoint
qianfan_model = QianfanLLMEndpoint(model="ERNIE-Bot",
endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk")
"""
llm = QianfanLLMEndpoint(
model="ERNIE-3.5-8K",
# api_key="...",
# secret_key="...",
# other params...
)
Invoke:
.. code-block:: python
messages = [
("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"),
("human", "我喜欢编程。"),
]
llm.invoke(messages)
.. code-block:: python
'I like programming.'
Stream:
.. code-block:: python
for chunk in llm.stream(messages):
print(chunk)
.. code-block:: python
I like
programming.
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block::
'I like programming.'
Async:
.. code-block:: python
await llm.ainvoke(messages)
# stream:
# async for chunk in llm.astream(messages):
# print(chunk)
# batch:
# await llm.abatch([messages])
.. code-block:: python
'I like programming.'
""" # noqa: E501
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""init kwargs for qianfan client init, such as `query_per_second` which is
@ -49,8 +129,8 @@ class QianfanLLMEndpoint(LLM):
client: Any
qianfan_ak: Optional[SecretStr] = None
qianfan_sk: Optional[SecretStr] = None
qianfan_ak: Optional[SecretStr] = Field(default=None, alias="api_key")
qianfan_sk: Optional[SecretStr] = Field(default=None, alias="secret_key")
streaming: Optional[bool] = False
"""Whether to stream the results or not."""
@ -68,7 +148,7 @@ class QianfanLLMEndpoint(LLM):
endpoint: Optional[str] = None
"""Endpoint of the Qianfan LLM, required if custom model used."""
request_timeout: Optional[int] = 60
request_timeout: Optional[int] = Field(default=60, alias="timeout")
"""request timeout for chat http requests"""
top_p: Optional[float] = 0.8
@ -83,7 +163,7 @@ class QianfanLLMEndpoint(LLM):
values["qianfan_ak"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"qianfan_ak",
["qianfan_ak", "api_key"],
"QIANFAN_AK",
default="",
)
@ -91,7 +171,7 @@ class QianfanLLMEndpoint(LLM):
values["qianfan_sk"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"qianfan_sk",
["qianfan_sk", "secret_key"],
"QIANFAN_SK",
default="",
)

View File

@ -1,8 +1,9 @@
"""Test Baidu Qianfan LLM Endpoint."""
from typing import Generator
from typing import Generator, cast
from langchain_core.outputs import LLMResult
from langchain_core.pydantic_v1 import SecretStr
from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint
@ -42,3 +43,15 @@ def test_rate_limit() -> None:
output = llm.generate(["write a joke"])
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)
def test_qianfan_with_param_alias() -> None:
"""Test with qianfan llm parameter alias."""
llm = QianfanLLMEndpoint( # type: ignore[call-arg]
api_key="your-api-key", # type: ignore[arg-type]
secret_key="your-secret-key", # type: ignore[arg-type]
timeout=50,
) # type: ignore[call-arg]
assert cast(SecretStr, llm.qianfan_ak).get_secret_value() == "your-api-key"
assert cast(SecretStr, llm.qianfan_sk).get_secret_value() == "your-secret-key"
assert llm.request_timeout == 50