community[minor]: Adds Llamafile as an LLM (#17431)

* **Description:** Adds a simple LLM implementation for interacting with
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
* **Dependencies:** N/A
* **Issue:** N/A

**Detail**
[llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you run LLMs
locally from a single file on most computers without installing any
dependencies.

To use the llamafile LLM implementation, the user needs to:

1. Download a llamafile e.g.
https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true
2. Make the file executable.
3. Run the llamafile in 'server mode'. (All llamafiles come packaged
with a lightweight server; by default, the server listens at
`http://localhost:8080`.)


```bash
wget https://url/of/model.llamafile
chmod +x model.llamafile
./model.llamafile --server --nobrowser
```

Now, the user can invoke the LLM via the LangChain client:

```python
from langchain_community.llms.llamafile import Llamafile

llm = Llamafile()

llm.invoke("Tell me a joke.")
```
This commit is contained in:
Kate Silverstein 2024-02-14 14:15:24 -05:00 committed by GitHub
parent 5ce1827d31
commit 0bc4a9b3fc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 655 additions and 0 deletions

View File

@ -0,0 +1,133 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Llamafile\n",
"\n",
"[Llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you distribute and run LLMs with a single file.\n",
"\n",
"Llamafile does this by combining [llama.cpp](https://github.com/ggerganov/llama.cpp) with [Cosmopolitan Libc](https://github.com/jart/cosmopolitan) into one framework that collapses all the complexity of LLMs down to a single-file executable (called a \"llamafile\") that runs locally on most computers, with no installation.\n",
"\n",
"## Setup\n",
"\n",
"1. Download a llamafile for the model you'd like to use. You can find many models in llamafile format on [HuggingFace](https://huggingface.co/models?other=llamafile). In this guide, we will download a small one, `TinyLlama-1.1B-Chat-v1.0.Q5_K_M`. Note: if you don't have `wget`, you can just download the model via this [link](https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true).\n",
"\n",
"```bash\n",
"wget https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile\n",
"```\n",
"\n",
"2. Make the llamafile executable. First, if you haven't done so already, open a terminal. **If you're using MacOS, Linux, or BSD,** you'll need to grant permission for your computer to execute this new file using `chmod` (see below). **If you're on Windows,** rename the file by adding \".exe\" to the end (model file should be named `TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile.exe`).\n",
"\n",
"\n",
"```bash\n",
"chmod +x TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile # run if you're on MacOS, Linux, or BSD\n",
"```\n",
"\n",
"3. Run the llamafile in \"server mode\":\n",
"\n",
"```bash\n",
"./TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile --server --nobrowser\n",
"```\n",
"\n",
"Now you can make calls to the llamafile's REST API. By default, the llamafile server listens at http://localhost:8080. You can find full server documentation [here](https://github.com/Mozilla-Ocho/llamafile/blob/main/llama.cpp/server/README.md#api-endpoints). You can interact with the llamafile directly via the REST API, but here we'll show how to interact with it using LangChain.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'? \\nI\\'ve got a thing for pink, but you know that.\\n\"Can we not talk about work anymore?\" - What did she say?\\nI don\\'t want to be a burden on you.\\nIt\\'s hard to keep a good thing going.\\nYou can\\'t tell me what I want, I have a life too!'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.llms.llamafile import Llamafile\n",
"\n",
"llm = Llamafile()\n",
"\n",
"llm.invoke(\"Tell me a joke\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To stream tokens, use the `.stream(...)` method:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
".\n",
"- She said, \"Im tired of my life. What should I do?\"\n",
"- The man replied, \"I hear you. But dont worry. Life is just like a joke. It has its funny parts too.\"\n",
"- The woman looked at him, amazed and happy to hear his wise words. - \"Thank you for your wisdom,\" she said, smiling. - He replied, \"Any time. But it doesn't come easy. You have to laugh and keep moving forward in life.\"\n",
"- She nodded, thanking him again. - The man smiled wryly. \"Life can be tough. Sometimes it seems like youre never going to get out of your situation.\"\n",
"- He said, \"I know that. But the key is not giving up. Life has many ups and downs, but in the end, it will turn out okay.\"\n",
"- The woman's eyes softened. \"Thank you for your advice. It's so important to keep moving forward in life,\" she said. - He nodded once again. \"Youre welcome. I hope your journey is filled with laughter and joy.\"\n",
"- They both smiled and left the bar, ready to embark on their respective adventures.\n"
]
}
],
"source": [
"query = \"Tell me a joke\"\n",
"\n",
"for chunks in llm.stream(query):\n",
" print(chunks, end=\"\")\n",
"\n",
"print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To learn more about the LangChain Expressive Language and the available methods on an LLM, see the [LCEL Interface](https://python.langchain.com/docs/expression_language/interface)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,318 @@
from __future__ import annotations
import json
from io import StringIO
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.pydantic_v1 import Extra
from langchain_core.utils import get_pydantic_field_names
class Llamafile(LLM):
"""Llamafile lets you distribute and run large language models with a
single file.
To get started, see: https://github.com/Mozilla-Ocho/llamafile
To use this class, you will need to first:
1. Download a llamafile.
2. Make the downloaded file executable: `chmod +x path/to/model.llamafile`
3. Start the llamafile in server mode:
`./path/to/model.llamafile --server --nobrowser`
Example:
.. code-block:: python
from langchain_community.llms import Llamafile
llm = Llamafile()
llm.invoke("Tell me a joke.")
"""
base_url: str = "http://localhost:8080"
"""Base url where the llamafile server is listening."""
request_timeout: Optional[int] = None
"""Timeout for server requests"""
streaming: bool = False
"""Allows receiving each predicted token in real-time instead of
waiting for the completion to finish. To enable this, set to true."""
# Generation options
seed: int = -1
"""Random Number Generator (RNG) seed. A random seed is used if this is
less than zero. Default: -1"""
temperature: float = 0.8
"""Temperature. Default: 0.8"""
top_k: int = 40
"""Limit the next token selection to the K most probable tokens.
Default: 40."""
top_p: float = 0.95
"""Limit the next token selection to a subset of tokens with a cumulative
probability above a threshold P. Default: 0.95."""
min_p: float = 0.05
"""The minimum probability for a token to be considered, relative to
the probability of the most likely token. Default: 0.05."""
n_predict: int = -1
"""Set the maximum number of tokens to predict when generating text.
Note: May exceed the set limit slightly if the last token is a partial
multibyte character. When 0, no tokens will be generated but the prompt
is evaluated into the cache. Default: -1 = infinity."""
n_keep: int = 0
"""Specify the number of tokens from the prompt to retain when the
context size is exceeded and tokens need to be discarded. By default,
this value is set to 0 (meaning no tokens are kept). Use -1 to retain all
tokens from the prompt."""
tfs_z: float = 1.0
"""Enable tail free sampling with parameter z. Default: 1.0 = disabled."""
typical_p: float = 1.0
"""Enable locally typical sampling with parameter p.
Default: 1.0 = disabled."""
repeat_penalty: float = 1.1
"""Control the repetition of token sequences in the generated text.
Default: 1.1"""
repeat_last_n: int = 64
"""Last n tokens to consider for penalizing repetition. Default: 64,
0 = disabled, -1 = ctx-size."""
penalize_nl: bool = True
"""Penalize newline tokens when applying the repeat penalty.
Default: true."""
presence_penalty: float = 0.0
"""Repeat alpha presence penalty. Default: 0.0 = disabled."""
frequency_penalty: float = 0.0
"""Repeat alpha frequency penalty. Default: 0.0 = disabled"""
mirostat: int = 0
"""Enable Mirostat sampling, controlling perplexity during text
generation. 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0.
Default: disabled."""
mirostat_tau: float = 5.0
"""Set the Mirostat target entropy, parameter tau. Default: 5.0."""
mirostat_eta: float = 0.1
"""Set the Mirostat learning rate, parameter eta. Default: 0.1."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _llm_type(self) -> str:
return "llamafile"
@property
def _param_fieldnames(self) -> List[str]:
# Return the list of fieldnames that will be passed as configurable
# generation options to the llamafile server. Exclude 'builtin' fields
# from the BaseLLM class like 'metadata' as well as fields that should
# not be passed in requests (base_url, request_timeout).
ignore_keys = [
"base_url",
"cache",
"callback_manager",
"callbacks",
"metadata",
"name",
"request_timeout",
"streaming",
"tags",
"verbose",
]
attrs = [
k for k in get_pydantic_field_names(self.__class__) if k not in ignore_keys
]
return attrs
@property
def _default_params(self) -> Dict[str, Any]:
params = {}
for fieldname in self._param_fieldnames:
params[fieldname] = getattr(self, fieldname)
return params
def _get_parameters(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
params = self._default_params
# Only update keys that are already present in the default config.
# This way, we don't accidentally post unknown/unhandled key/values
# in the request to the llamafile server
for k, v in kwargs.items():
if k in params:
params[k] = v
if stop is not None and len(stop) > 0:
params["stop"] = stop
if self.streaming:
params["stream"] = True
return params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Request prompt completion from the llamafile server and return the
output.
Args:
prompt: The prompt to use for generation.
stop: A list of strings to stop generation when encountered.
run_manager:
**kwargs: Any additional options to pass as part of the
generation request.
Returns:
The string generated by the model.
"""
if self.streaming:
with StringIO() as buff:
for chunk in self._stream(
prompt, stop=stop, run_manager=run_manager, **kwargs
):
buff.write(chunk.text)
text = buff.getvalue()
return text
else:
params = self._get_parameters(stop=stop, **kwargs)
payload = {"prompt": prompt, **params}
try:
response = requests.post(
url=f"{self.base_url}/completion",
headers={
"Content-Type": "application/json",
},
json=payload,
stream=False,
timeout=self.request_timeout,
)
except requests.exceptions.ConnectionError:
raise requests.exceptions.ConnectionError(
f"Could not connect to Llamafile server. Please make sure "
f"that a server is running at {self.base_url}."
)
response.raise_for_status()
response.encoding = "utf-8"
text = response.json()["content"]
return text
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Yields results objects as they are generated in real time.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager:
**kwargs: Any additional options to pass as part of the
generation request.
Returns:
A generator representing the stream of tokens being generated.
Yields:
Dictionary-like objects each containing a token
Example:
.. code-block:: python
from langchain_community.llms import Llamafile
llm = Llamafile(
temperature = 0.0
)
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
stop=["'","\n"]):
result = chunk["choices"][0]
print(result["text"], end='', flush=True)
"""
params = self._get_parameters(stop=stop, **kwargs)
if "stream" not in params:
params["stream"] = True
payload = {"prompt": prompt, **params}
try:
response = requests.post(
url=f"{self.base_url}/completion",
headers={
"Content-Type": "application/json",
},
json=payload,
stream=True,
timeout=self.request_timeout,
)
except requests.exceptions.ConnectionError:
raise requests.exceptions.ConnectionError(
f"Could not connect to Llamafile server. Please make sure "
f"that a server is running at {self.base_url}."
)
response.encoding = "utf8"
for raw_chunk in response.iter_lines(decode_unicode=True):
content = self._get_chunk_content(raw_chunk)
chunk = GenerationChunk(text=content)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token=chunk.text)
def _get_chunk_content(self, chunk: str) -> str:
"""When streaming is turned on, llamafile server returns lines like:
'data: {"content":" They","multimodal":true,"slot_id":0,"stop":false}'
Here, we convert this to a dict and return the value of the 'content'
field
"""
if chunk.startswith("data:"):
cleaned = chunk.lstrip("data: ")
data = json.loads(cleaned)
return data["content"]
else:
return chunk

View File

@ -0,0 +1,46 @@
import os
from typing import Generator
import pytest
import requests
from requests.exceptions import ConnectionError, HTTPError
from langchain_community.llms.llamafile import Llamafile
LLAMAFILE_SERVER_BASE_URL = os.getenv(
"LLAMAFILE_SERVER_BASE_URL", "http://localhost:8080"
)
def _ping_llamafile_server() -> bool:
try:
response = requests.get(LLAMAFILE_SERVER_BASE_URL)
response.raise_for_status()
except (ConnectionError, HTTPError):
return False
return True
@pytest.mark.skipif(
not _ping_llamafile_server(),
reason=f"unable to find llamafile server at {LLAMAFILE_SERVER_BASE_URL}, "
f"please start one and re-run this test",
)
def test_llamafile_call() -> None:
llm = Llamafile()
output = llm.invoke("Say foo:")
assert isinstance(output, str)
@pytest.mark.skipif(
not _ping_llamafile_server(),
reason=f"unable to find llamafile server at {LLAMAFILE_SERVER_BASE_URL}, "
f"please start one and re-run this test",
)
def test_llamafile_streaming() -> None:
llm = Llamafile(streaming=True)
generator = llm.stream("Tell me about Roman dodecahedrons.")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token, str)

View File

@ -0,0 +1,158 @@
import json
from collections import deque
from typing import Any, Dict
import pytest
import requests
from pytest import MonkeyPatch
from langchain_community.llms.llamafile import Llamafile
def default_generation_params() -> Dict[str, Any]:
return {
"temperature": 0.8,
"seed": -1,
"top_k": 40,
"top_p": 0.95,
"min_p": 0.05,
"n_predict": -1,
"n_keep": 0,
"tfs_z": 1.0,
"typical_p": 1.0,
"repeat_penalty": 1.1,
"repeat_last_n": 64,
"penalize_nl": True,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"mirostat": 0,
"mirostat_tau": 5.0,
"mirostat_eta": 0.1,
}
def mock_response() -> requests.Response:
contents = json.dumps({"content": "the quick brown fox"})
response = requests.Response()
response.status_code = 200
response._content = str.encode(contents)
return response
def mock_response_stream(): # type: ignore[no-untyped-def]
mock_response = deque(
[
b'data: {"content":"the","multimodal":false,"slot_id":0,"stop":false}\n\n', # noqa
b'data: {"content":" quick","multimodal":false,"slot_id":0,"stop":false}\n\n', # noqa
]
)
class MockRaw:
def read(self, chunk_size): # type: ignore[no-untyped-def]
try:
return mock_response.popleft()
except IndexError:
return None
response = requests.Response()
response.status_code = 200
response.raw = MockRaw()
return response
def test_call(monkeypatch: MonkeyPatch) -> None:
"""
Test basic functionality of the `invoke` method
"""
llm = Llamafile(
base_url="http://llamafile-host:8080",
)
def mock_post(url, headers, json, stream, timeout): # type: ignore[no-untyped-def]
assert url == "http://llamafile-host:8080/completion"
assert headers == {
"Content-Type": "application/json",
}
# 'unknown' kwarg should be ignored
assert json == {"prompt": "Test prompt", **default_generation_params()}
assert stream is False
assert timeout is None
return mock_response()
monkeypatch.setattr(requests, "post", mock_post)
out = llm.invoke("Test prompt")
assert out == "the quick brown fox"
def test_call_with_kwargs(monkeypatch: MonkeyPatch) -> None:
"""
Test kwargs passed to `invoke` override the default values and are passed
to the endpoint correctly. Also test that any 'unknown' kwargs that are not
present in the LLM class attrs are ignored.
"""
llm = Llamafile(
base_url="http://llamafile-host:8080",
)
def mock_post(url, headers, json, stream, timeout): # type: ignore[no-untyped-def]
assert url == "http://llamafile-host:8080/completion"
assert headers == {
"Content-Type": "application/json",
}
# 'unknown' kwarg should be ignored
expected = {"prompt": "Test prompt", **default_generation_params()}
expected["seed"] = 0
assert json == expected
assert stream is False
assert timeout is None
return mock_response()
monkeypatch.setattr(requests, "post", mock_post)
out = llm.invoke(
"Test prompt",
unknown="unknown option", # should be ignored
seed=0, # should override the default
)
assert out == "the quick brown fox"
def test_call_raises_exception_on_missing_server(monkeypatch: MonkeyPatch) -> None:
"""
Test that the LLM raises a ConnectionError when no llamafile server is
listening at the base_url.
"""
llm = Llamafile(
# invalid url, nothing should actually be running here
base_url="http://llamafile-host:8080",
)
with pytest.raises(requests.exceptions.ConnectionError):
llm.invoke("Test prompt")
def test_streaming(monkeypatch: MonkeyPatch) -> None:
"""
Test basic functionality of `invoke` with streaming enabled.
"""
llm = Llamafile(
base_url="http://llamafile-hostname:8080",
streaming=True,
)
def mock_post(url, headers, json, stream, timeout): # type: ignore[no-untyped-def]
assert url == "http://llamafile-hostname:8080/completion"
assert headers == {
"Content-Type": "application/json",
}
# 'unknown' kwarg should be ignored
assert "unknown" not in json
expected = {"prompt": "Test prompt", **default_generation_params()}
expected["stream"] = True
assert json == expected
assert stream is True
assert timeout is None
return mock_response_stream()
monkeypatch.setattr(requests, "post", mock_post)
out = llm.invoke("Test prompt")
assert out == "the quick"