mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-03 03:38:06 +00:00
feat(community): support semantic hybrid score threshold in Azure AI Search (#21527)
Support semantic hybrid search with a score threshold -- similar to what we do for similarity search and for hybrid search (#20907).
This commit is contained in:
parent
5e445a7e4e
commit
0c0db7c5db
@ -13,6 +13,7 @@ from typing import (
|
||||
Dict,
|
||||
Iterable,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
@ -567,7 +568,11 @@ class AzureSearch(VectorStore):
|
||||
return [doc for doc, _, _ in docs_and_scores]
|
||||
|
||||
def semantic_hybrid_search_with_score(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
score_type: Literal["score", "reranker_score"] = "score",
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""
|
||||
Returns the most similar indexed documents to the query text.
|
||||
@ -575,14 +580,29 @@ class AzureSearch(VectorStore):
|
||||
Args:
|
||||
query (str): The query text for which to find similar documents.
|
||||
k (int): The number of documents to return. Default is 4.
|
||||
score_type: Must either be "score" or "reranker_score".
|
||||
Defaulted to "score".
|
||||
|
||||
Returns:
|
||||
List[Document]: A list of documents that are most similar to the query text.
|
||||
List[Tuple[Document, float]]: A list of documents and their
|
||||
corresponding scores.
|
||||
"""
|
||||
score_threshold = kwargs.pop("score_threshold", None)
|
||||
docs_and_scores = self.semantic_hybrid_search_with_score_and_rerank(
|
||||
query, k=k, filters=kwargs.get("filters", None)
|
||||
)
|
||||
return [(doc, score) for doc, score, _ in docs_and_scores]
|
||||
if score_type == "score":
|
||||
return [
|
||||
(doc, score)
|
||||
for doc, score, _ in docs_and_scores
|
||||
if score_threshold is None or score >= score_threshold
|
||||
]
|
||||
elif score_type == "reranker_score":
|
||||
return [
|
||||
(doc, reranker_score)
|
||||
for doc, _, reranker_score in docs_and_scores
|
||||
if score_threshold is None or reranker_score >= score_threshold
|
||||
]
|
||||
|
||||
def semantic_hybrid_search_with_score_and_rerank(
|
||||
self, query: str, k: int = 4, filters: Optional[str] = None
|
||||
@ -716,7 +736,8 @@ class AzureSearchVectorStoreRetriever(BaseRetriever):
|
||||
"""Azure Search instance used to find similar documents."""
|
||||
search_type: str = "hybrid"
|
||||
"""Type of search to perform. Options are "similarity", "hybrid",
|
||||
"semantic_hybrid", "similarity_score_threshold", "hybrid_score_threshold"."""
|
||||
"semantic_hybrid", "similarity_score_threshold", "hybrid_score_threshold",
|
||||
or "semantic_hybrid_score_threshold"."""
|
||||
k: int = 4
|
||||
"""Number of documents to return."""
|
||||
allowed_search_types: ClassVar[Collection[str]] = (
|
||||
@ -725,6 +746,7 @@ class AzureSearchVectorStoreRetriever(BaseRetriever):
|
||||
"hybrid",
|
||||
"hybrid_score_threshold",
|
||||
"semantic_hybrid",
|
||||
"semantic_hybrid_score_threshold",
|
||||
)
|
||||
|
||||
class Config:
|
||||
@ -770,6 +792,13 @@ class AzureSearchVectorStoreRetriever(BaseRetriever):
|
||||
]
|
||||
elif self.search_type == "semantic_hybrid":
|
||||
docs = self.vectorstore.semantic_hybrid_search(query, k=self.k, **kwargs)
|
||||
elif self.search_type == "semantic_hybrid_score_threshold":
|
||||
docs = [
|
||||
doc
|
||||
for doc, _ in self.vectorstore.semantic_hybrid_search_with_score(
|
||||
query, k=self.k, **kwargs
|
||||
)
|
||||
]
|
||||
else:
|
||||
raise ValueError(f"search_type of {self.search_type} not allowed.")
|
||||
return docs
|
||||
|
Loading…
Reference in New Issue
Block a user