mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 02:03:32 +00:00 
			
		
		
		
	oai v1 embeddings (#12969)
Initial PR to get OpenAIEmbeddings working with the new sdk fyi @rlancemartin Fixes #12943 --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
		@@ -2,7 +2,9 @@ from __future__ import annotations
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
import logging
 | 
					import logging
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					from importlib.metadata import version
 | 
				
			||||||
from typing import (
 | 
					from typing import (
 | 
				
			||||||
 | 
					    TYPE_CHECKING,
 | 
				
			||||||
    Any,
 | 
					    Any,
 | 
				
			||||||
    Callable,
 | 
					    Callable,
 | 
				
			||||||
    Dict,
 | 
					    Dict,
 | 
				
			||||||
@@ -16,6 +18,7 @@ from typing import (
 | 
				
			|||||||
)
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from packaging.version import Version, parse
 | 
				
			||||||
from tenacity import (
 | 
					from tenacity import (
 | 
				
			||||||
    AsyncRetrying,
 | 
					    AsyncRetrying,
 | 
				
			||||||
    before_sleep_log,
 | 
					    before_sleep_log,
 | 
				
			||||||
@@ -29,6 +32,9 @@ from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
 | 
				
			|||||||
from langchain.schema.embeddings import Embeddings
 | 
					from langchain.schema.embeddings import Embeddings
 | 
				
			||||||
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
 | 
					from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if TYPE_CHECKING:
 | 
				
			||||||
 | 
					    import httpx
 | 
				
			||||||
 | 
					
 | 
				
			||||||
logger = logging.getLogger(__name__)
 | 
					logger = logging.getLogger(__name__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -97,6 +103,8 @@ def _check_response(response: dict, skip_empty: bool = False) -> dict:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
 | 
					def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
 | 
				
			||||||
    """Use tenacity to retry the embedding call."""
 | 
					    """Use tenacity to retry the embedding call."""
 | 
				
			||||||
 | 
					    if _is_openai_v1():
 | 
				
			||||||
 | 
					        return embeddings.client.create(**kwargs)
 | 
				
			||||||
    retry_decorator = _create_retry_decorator(embeddings)
 | 
					    retry_decorator = _create_retry_decorator(embeddings)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    @retry_decorator
 | 
					    @retry_decorator
 | 
				
			||||||
@@ -110,6 +118,9 @@ def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
 | 
				
			|||||||
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
 | 
					async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
 | 
				
			||||||
    """Use tenacity to retry the embedding call."""
 | 
					    """Use tenacity to retry the embedding call."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if _is_openai_v1():
 | 
				
			||||||
 | 
					        return await embeddings.async_client.create(**kwargs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    @_async_retry_decorator(embeddings)
 | 
					    @_async_retry_decorator(embeddings)
 | 
				
			||||||
    async def _async_embed_with_retry(**kwargs: Any) -> Any:
 | 
					    async def _async_embed_with_retry(**kwargs: Any) -> Any:
 | 
				
			||||||
        response = await embeddings.client.acreate(**kwargs)
 | 
					        response = await embeddings.client.acreate(**kwargs)
 | 
				
			||||||
@@ -118,6 +129,11 @@ async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) ->
 | 
				
			|||||||
    return await _async_embed_with_retry(**kwargs)
 | 
					    return await _async_embed_with_retry(**kwargs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _is_openai_v1() -> bool:
 | 
				
			||||||
 | 
					    _version = parse(version("openai"))
 | 
				
			||||||
 | 
					    return _version >= Version("1.0.0")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
					class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			||||||
    """OpenAI embedding models.
 | 
					    """OpenAI embedding models.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -160,6 +176,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			|||||||
    """
 | 
					    """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    client: Any = None  #: :meta private:
 | 
					    client: Any = None  #: :meta private:
 | 
				
			||||||
 | 
					    async_client: Any = None  #: :meta private:
 | 
				
			||||||
    model: str = "text-embedding-ada-002"
 | 
					    model: str = "text-embedding-ada-002"
 | 
				
			||||||
    deployment: str = model  # to support Azure OpenAI Service custom deployment names
 | 
					    deployment: str = model  # to support Azure OpenAI Service custom deployment names
 | 
				
			||||||
    openai_api_version: Optional[str] = None
 | 
					    openai_api_version: Optional[str] = None
 | 
				
			||||||
@@ -179,7 +196,9 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			|||||||
    """Maximum number of texts to embed in each batch"""
 | 
					    """Maximum number of texts to embed in each batch"""
 | 
				
			||||||
    max_retries: int = 6
 | 
					    max_retries: int = 6
 | 
				
			||||||
    """Maximum number of retries to make when generating."""
 | 
					    """Maximum number of retries to make when generating."""
 | 
				
			||||||
    request_timeout: Optional[Union[float, Tuple[float, float]]] = None
 | 
					    request_timeout: Optional[Union[float, Tuple[float, float], httpx.Timeout]] = Field(
 | 
				
			||||||
 | 
					        default=None, alias="timeout"
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
    """Timeout in seconds for the OpenAPI request."""
 | 
					    """Timeout in seconds for the OpenAPI request."""
 | 
				
			||||||
    headers: Any = None
 | 
					    headers: Any = None
 | 
				
			||||||
    tiktoken_model_name: Optional[str] = None
 | 
					    tiktoken_model_name: Optional[str] = None
 | 
				
			||||||
@@ -281,7 +300,23 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			|||||||
        try:
 | 
					        try:
 | 
				
			||||||
            import openai
 | 
					            import openai
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            values["client"] = openai.Embedding
 | 
					            if _is_openai_v1():
 | 
				
			||||||
 | 
					                values["client"] = openai.OpenAI(
 | 
				
			||||||
 | 
					                    api_key=values.get("openai_api_key"),
 | 
				
			||||||
 | 
					                    timeout=values.get("request_timeout"),
 | 
				
			||||||
 | 
					                    max_retries=values.get("max_retries"),
 | 
				
			||||||
 | 
					                    organization=values.get("openai_organization"),
 | 
				
			||||||
 | 
					                    base_url=values.get("openai_api_base") or None,
 | 
				
			||||||
 | 
					                ).embeddings
 | 
				
			||||||
 | 
					                values["async_client"] = openai.AsyncOpenAI(
 | 
				
			||||||
 | 
					                    api_key=values.get("openai_api_key"),
 | 
				
			||||||
 | 
					                    timeout=values.get("request_timeout"),
 | 
				
			||||||
 | 
					                    max_retries=values.get("max_retries"),
 | 
				
			||||||
 | 
					                    organization=values.get("openai_organization"),
 | 
				
			||||||
 | 
					                    base_url=values.get("openai_api_base") or None,
 | 
				
			||||||
 | 
					                ).embeddings
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                values["client"] = openai.Embedding
 | 
				
			||||||
        except ImportError:
 | 
					        except ImportError:
 | 
				
			||||||
            raise ImportError(
 | 
					            raise ImportError(
 | 
				
			||||||
                "Could not import openai python package. "
 | 
					                "Could not import openai python package. "
 | 
				
			||||||
@@ -290,18 +325,22 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			|||||||
        return values
 | 
					        return values
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    @property
 | 
					    @property
 | 
				
			||||||
    def _invocation_params(self) -> Dict:
 | 
					    def _invocation_params(self) -> Dict[str, Any]:
 | 
				
			||||||
        openai_args = {
 | 
					        openai_args: Dict[str, Any] = (
 | 
				
			||||||
            "model": self.model,
 | 
					            {"model": self.model, **self.model_kwargs}
 | 
				
			||||||
            "request_timeout": self.request_timeout,
 | 
					            if _is_openai_v1()
 | 
				
			||||||
            "headers": self.headers,
 | 
					            else {
 | 
				
			||||||
            "api_key": self.openai_api_key,
 | 
					                "model": self.model,
 | 
				
			||||||
            "organization": self.openai_organization,
 | 
					                "request_timeout": self.request_timeout,
 | 
				
			||||||
            "api_base": self.openai_api_base,
 | 
					                "headers": self.headers,
 | 
				
			||||||
            "api_type": self.openai_api_type,
 | 
					                "api_key": self.openai_api_key,
 | 
				
			||||||
            "api_version": self.openai_api_version,
 | 
					                "organization": self.openai_organization,
 | 
				
			||||||
            **self.model_kwargs,
 | 
					                "api_base": self.openai_api_base,
 | 
				
			||||||
        }
 | 
					                "api_type": self.openai_api_type,
 | 
				
			||||||
 | 
					                "api_version": self.openai_api_version,
 | 
				
			||||||
 | 
					                **self.model_kwargs,
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
        if self.openai_api_type in ("azure", "azure_ad", "azuread"):
 | 
					        if self.openai_api_type in ("azure", "azure_ad", "azuread"):
 | 
				
			||||||
            openai_args["engine"] = self.deployment
 | 
					            openai_args["engine"] = self.deployment
 | 
				
			||||||
        if self.openai_proxy:
 | 
					        if self.openai_proxy:
 | 
				
			||||||
@@ -376,6 +415,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			|||||||
                input=tokens[i : i + _chunk_size],
 | 
					                input=tokens[i : i + _chunk_size],
 | 
				
			||||||
                **self._invocation_params,
 | 
					                **self._invocation_params,
 | 
				
			||||||
            )
 | 
					            )
 | 
				
			||||||
 | 
					            if not isinstance(response, dict):
 | 
				
			||||||
 | 
					                response = response.dict()
 | 
				
			||||||
            batched_embeddings.extend(r["embedding"] for r in response["data"])
 | 
					            batched_embeddings.extend(r["embedding"] for r in response["data"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        results: List[List[List[float]]] = [[] for _ in range(len(texts))]
 | 
					        results: List[List[List[float]]] = [[] for _ in range(len(texts))]
 | 
				
			||||||
@@ -389,11 +430,14 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			|||||||
        for i in range(len(texts)):
 | 
					        for i in range(len(texts)):
 | 
				
			||||||
            _result = results[i]
 | 
					            _result = results[i]
 | 
				
			||||||
            if len(_result) == 0:
 | 
					            if len(_result) == 0:
 | 
				
			||||||
                average = embed_with_retry(
 | 
					                average_embedded = embed_with_retry(
 | 
				
			||||||
                    self,
 | 
					                    self,
 | 
				
			||||||
                    input="",
 | 
					                    input="",
 | 
				
			||||||
                    **self._invocation_params,
 | 
					                    **self._invocation_params,
 | 
				
			||||||
                )["data"][0]["embedding"]
 | 
					                )
 | 
				
			||||||
 | 
					                if not isinstance(average_embedded, dict):
 | 
				
			||||||
 | 
					                    average_embedded = average_embedded.dict()
 | 
				
			||||||
 | 
					                average = average_embedded["data"][0]["embedding"]
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
 | 
					                average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
 | 
				
			||||||
            embeddings[i] = (average / np.linalg.norm(average)).tolist()
 | 
					            embeddings[i] = (average / np.linalg.norm(average)).tolist()
 | 
				
			||||||
@@ -446,6 +490,9 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			|||||||
                input=tokens[i : i + _chunk_size],
 | 
					                input=tokens[i : i + _chunk_size],
 | 
				
			||||||
                **self._invocation_params,
 | 
					                **self._invocation_params,
 | 
				
			||||||
            )
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if not isinstance(response, dict):
 | 
				
			||||||
 | 
					                response = response.dict()
 | 
				
			||||||
            batched_embeddings.extend(r["embedding"] for r in response["data"])
 | 
					            batched_embeddings.extend(r["embedding"] for r in response["data"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        results: List[List[List[float]]] = [[] for _ in range(len(texts))]
 | 
					        results: List[List[List[float]]] = [[] for _ in range(len(texts))]
 | 
				
			||||||
@@ -457,13 +504,14 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
 | 
				
			|||||||
        for i in range(len(texts)):
 | 
					        for i in range(len(texts)):
 | 
				
			||||||
            _result = results[i]
 | 
					            _result = results[i]
 | 
				
			||||||
            if len(_result) == 0:
 | 
					            if len(_result) == 0:
 | 
				
			||||||
                average = (
 | 
					                average_embedded = embed_with_retry(
 | 
				
			||||||
                    await async_embed_with_retry(
 | 
					                    self,
 | 
				
			||||||
                        self,
 | 
					                    input="",
 | 
				
			||||||
                        input="",
 | 
					                    **self._invocation_params,
 | 
				
			||||||
                        **self._invocation_params,
 | 
					                )
 | 
				
			||||||
                    )
 | 
					                if not isinstance(average_embedded, dict):
 | 
				
			||||||
                )["data"][0]["embedding"]
 | 
					                    average_embedded = average_embedded.dict()
 | 
				
			||||||
 | 
					                average = average_embedded["data"][0]["embedding"]
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
 | 
					                average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
 | 
				
			||||||
            embeddings[i] = (average / np.linalg.norm(average)).tolist()
 | 
					            embeddings[i] = (average / np.linalg.norm(average)).tolist()
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,6 +1,4 @@
 | 
				
			|||||||
"""Test openai embeddings."""
 | 
					"""Test openai embeddings."""
 | 
				
			||||||
import os
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import openai
 | 
					import openai
 | 
				
			||||||
import pytest
 | 
					import pytest
 | 
				
			||||||
@@ -90,26 +88,3 @@ def test_embed_documents_normalized() -> None:
 | 
				
			|||||||
def test_embed_query_normalized() -> None:
 | 
					def test_embed_query_normalized() -> None:
 | 
				
			||||||
    output = OpenAIEmbeddings().embed_query("foo walked to the market")
 | 
					    output = OpenAIEmbeddings().embed_query("foo walked to the market")
 | 
				
			||||||
    assert np.isclose(np.linalg.norm(output), 1.0)
 | 
					    assert np.isclose(np.linalg.norm(output), 1.0)
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def test_azure_openai_embeddings() -> None:
 | 
					 | 
				
			||||||
    from openai import error
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    os.environ["OPENAI_API_TYPE"] = "azure"
 | 
					 | 
				
			||||||
    os.environ["OPENAI_API_BASE"] = "https://your-endpoint.openai.azure.com/"
 | 
					 | 
				
			||||||
    os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
 | 
					 | 
				
			||||||
    os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    embeddings = OpenAIEmbeddings(deployment="your-embeddings-deployment-name")
 | 
					 | 
				
			||||||
    text = "This is a test document."
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    try:
 | 
					 | 
				
			||||||
        embeddings.embed_query(text)
 | 
					 | 
				
			||||||
    except error.InvalidRequestError as e:
 | 
					 | 
				
			||||||
        if "Must provide an 'engine' or 'deployment_id' parameter" in str(e):
 | 
					 | 
				
			||||||
            assert (
 | 
					 | 
				
			||||||
                False
 | 
					 | 
				
			||||||
            ), "deployment was provided to but openai.Embeddings didn't get it."
 | 
					 | 
				
			||||||
    except Exception:
 | 
					 | 
				
			||||||
        # Expected to fail because endpoint doesn't exist.
 | 
					 | 
				
			||||||
        pass
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user