Community: Fuse HuggingFace Endpoint-related classes into one (#17254)

## Description
Fuse HuggingFace Endpoint-related classes into one:
-
[HuggingFaceHub](5ceaf784f3/libs/community/langchain_community/llms/huggingface_hub.py)
-
[HuggingFaceTextGenInference](5ceaf784f3/libs/community/langchain_community/llms/huggingface_text_gen_inference.py)
- and
[HuggingFaceEndpoint](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py)

Are fused into
- HuggingFaceEndpoint

## Issue
The deduplication of classes was creating a lack of clarity, and
additional effort to develop classes leads to issues like [this
hack](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py (L159)).

## Dependancies

None, this removes dependancies.

## Twitter handle

If you want to post about this: @AymericRoucher

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Aymeric Roucher
2024-02-19 19:33:15 +01:00
committed by GitHub
parent 8009be862e
commit 0d294760e7
10 changed files with 632 additions and 745 deletions

View File

@@ -1,6 +1,5 @@
"""Test HuggingFace API wrapper."""
"""Test HuggingFace Endpoints."""
import unittest
from pathlib import Path
import pytest
@@ -10,42 +9,9 @@ from langchain_community.llms.loading import load_llm
from tests.integration_tests.llms.utils import assert_llm_equality
@unittest.skip(
"This test requires an inference endpoint. Tested with Hugging Face endpoints"
)
def test_huggingface_endpoint_text_generation() -> None:
"""Test valid call to HuggingFace text generation model."""
llm = HuggingFaceEndpoint(
endpoint_url="", task="text-generation", model_kwargs={"max_new_tokens": 10}
)
output = llm("Say foo:")
print(output) # noqa: T201
assert isinstance(output, str)
@unittest.skip(
"This test requires an inference endpoint. Tested with Hugging Face endpoints"
)
def test_huggingface_endpoint_text2text_generation() -> None:
"""Test valid call to HuggingFace text2text model."""
llm = HuggingFaceEndpoint(endpoint_url="", task="text2text-generation")
output = llm("The capital of New York is")
assert output == "Albany"
@unittest.skip(
"This test requires an inference endpoint. Tested with Hugging Face endpoints"
)
def test_huggingface_endpoint_summarization() -> None:
"""Test valid call to HuggingFace summarization model."""
llm = HuggingFaceEndpoint(endpoint_url="", task="summarization")
output = llm("Say foo:")
assert isinstance(output, str)
def test_huggingface_endpoint_call_error() -> None:
"""Test valid call to HuggingFace that errors."""
llm = HuggingFaceEndpoint(model_kwargs={"max_new_tokens": -1})
llm = HuggingFaceEndpoint(endpoint_url="", model_kwargs={"max_new_tokens": -1})
with pytest.raises(ValueError):
llm("Say foo:")
@@ -58,3 +24,58 @@ def test_saving_loading_endpoint_llm(tmp_path: Path) -> None:
llm.save(file_path=tmp_path / "hf.yaml")
loaded_llm = load_llm(tmp_path / "hf.yaml")
assert_llm_equality(llm, loaded_llm)
def test_huggingface_text_generation() -> None:
"""Test valid call to HuggingFace text generation model."""
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
output = llm("Say foo:")
print(output) # noqa: T201
assert isinstance(output, str)
def test_huggingface_text2text_generation() -> None:
"""Test valid call to HuggingFace text2text model."""
llm = HuggingFaceEndpoint(repo_id="google/flan-t5-xl")
output = llm("The capital of New York is")
assert output == "Albany"
def test_huggingface_summarization() -> None:
"""Test valid call to HuggingFace summarization model."""
llm = HuggingFaceEndpoint(repo_id="facebook/bart-large-cnn")
output = llm("Say foo:")
assert isinstance(output, str)
def test_huggingface_call_error() -> None:
"""Test valid call to HuggingFace that errors."""
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": -1})
with pytest.raises(ValueError):
llm("Say foo:")
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an HuggingFaceEndpoint LLM."""
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
llm.save(file_path=tmp_path / "hf.yaml")
loaded_llm = load_llm(tmp_path / "hf.yaml")
assert_llm_equality(llm, loaded_llm)
def test_invocation_params_stop_sequences() -> None:
llm = HuggingFaceEndpoint()
assert llm._default_params["stop_sequences"] == []
runtime_stop = None
assert llm._invocation_params(runtime_stop)["stop_sequences"] == []
assert llm._default_params["stop_sequences"] == []
runtime_stop = ["stop"]
assert llm._invocation_params(runtime_stop)["stop_sequences"] == ["stop"]
assert llm._default_params["stop_sequences"] == []
llm = HuggingFaceEndpoint(stop_sequences=["."])
runtime_stop = ["stop"]
assert llm._invocation_params(runtime_stop)["stop_sequences"] == [".", "stop"]
assert llm._default_params["stop_sequences"] == ["."]