codespell: workflow, config + some (quite a few) typos fixed (#6785)

Probably the most  boring PR to review ;)

Individual commits might be easier to digest

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This commit is contained in:
Yaroslav Halchenko
2023-07-12 16:20:08 -04:00
committed by GitHub
parent 931e68692e
commit 0d92a7f357
100 changed files with 213 additions and 127 deletions

View File

@@ -1,7 +1,7 @@
# Grobid
This page covers how to use the Grobid to parse articles for LangChain.
It is seperated into two parts: installation and running the server
It is separated into two parts: installation and running the server
## Installation and Setup
#Ensure You have Java installed

View File

@@ -10,7 +10,7 @@ For Feedback, Issues, Contributions - please raise an issue here:
Main principles and benefits:
- more `pythonic` way of writing code
- write multiline prompts that wont break your code flow with indentation
- write multiline prompts that won't break your code flow with indentation
- making use of IDE in-built support for **hinting**, **type checking** and **popup with docs** to quickly peek in the function to see the prompt, parameters it consumes etc.
- leverage all the power of 🦜🔗 LangChain ecosystem
- adding support for **optional parameters**
@@ -31,7 +31,7 @@ def write_me_short_post(topic:str, platform:str="twitter", audience:str = "devel
"""
return
# run it naturaly
# run it naturally
write_me_short_post(topic="starwars")
# or
write_me_short_post(topic="starwars", platform="redit")
@@ -122,7 +122,7 @@ await write_me_short_post(topic="old movies")
# Simplified streaming
If we wan't to leverage streaming:
If we want to leverage streaming:
- we need to define prompt as async function
- turn on the streaming on the decorator, or we can define PromptType with streaming on
- capture the stream using StreamingContext
@@ -149,7 +149,7 @@ async def write_me_short_post(topic:str, platform:str="twitter", audience:str =
# just an arbitrary function to demonstrate the streaming... wil be some websockets code in the real world
# just an arbitrary function to demonstrate the streaming... will be some websockets code in the real world
tokens=[]
def capture_stream_func(new_token:str):
tokens.append(new_token)
@@ -250,7 +250,7 @@ the roles here are model native roles (assistant, user, system for chatGPT)
# Optional sections
- you can define a whole sections of your prompt that should be optional
- if any input in the section is missing, the whole section wont be rendered
- if any input in the section is missing, the whole section won't be rendered
the syntax for this is as follows:
@@ -273,7 +273,7 @@ def prompt_with_optional_partials():
# Output parsers
- llm_prompt decorator natively tries to detect the best output parser based on the output type. (if not set, it returns the raw string)
- list, dict and pydantic outputs are also supported natively (automaticaly)
- list, dict and pydantic outputs are also supported natively (automatically)
``` python
# this code example is complete and should run as it is

View File

@@ -18,7 +18,7 @@ We also deliver with live demo on huggingface! Please checkout our [huggingface
## Installation and Setup
- Install the Python SDK with `pip install clickhouse-connect`
### Setting up envrionments
### Setting up environments
There are two ways to set up parameters for myscale index.

View File

@@ -39,7 +39,7 @@ vectara = Vectara(
```
The customer_id, corpus_id and api_key are optional, and if they are not supplied will be read from the environment variables `VECTARA_CUSTOMER_ID`, `VECTARA_CORPUS_ID` and `VECTARA_API_KEY`, respectively.
Afer you have the vectorstore, you can `add_texts` or `add_documents` as per the standard `VectorStore` interface, for example:
After you have the vectorstore, you can `add_texts` or `add_documents` as per the standard `VectorStore` interface, for example:
```python
vectara.add_texts(["to be or not to be", "that is the question"])