codespell: workflow, config + some (quite a few) typos fixed (#6785)

Probably the most  boring PR to review ;)

Individual commits might be easier to digest

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This commit is contained in:
Yaroslav Halchenko
2023-07-12 16:20:08 -04:00
committed by GitHub
parent 931e68692e
commit 0d92a7f357
100 changed files with 213 additions and 127 deletions

View File

@@ -126,7 +126,7 @@ print(response)
TL;DR
We recently open-sourced an auto-evaluator tool for grading LLM question-answer chains. We are now releasing an open source, free to use hosted app and API to expand usability. Below we discuss a few opportunities to further improve May 1, 2023 5 min read Callbacks Improvements TL;DR: We're announcing improvements to our callbacks system, which powers logging, tracing, streaming output, and some awesome third-party integrations. This will better support concurrent runs with independent callbacks, tracing of deeply nested trees of LangChain components, and callback handlers scoped to a single request (which is super useful for May 1, 2023 3 min read Unleashing the power of AI Collaboration with Parallelized LLM Agent Actor Trees Editor's note: the following is a guest blog post from Cyrus at Shaman AI. We use guest blog posts to highlight interesting and novel applciations, and this is certainly that. There's been a lot of talk about agents recently, but most have been discussions around a single agent. If multiple Apr 28, 2023 4 min read Gradio & LLM Agents Editor's note: this is a guest blog post from Freddy Boulton, a software engineer at Gradio. We're excited to share this post because it brings a large number of exciting new tools into the ecosystem. Agents are largely defined by the tools they have, so to be able to equip Apr 23, 2023 4 min read RecAlign - The smart content filter for social media feed [Editor's Note] This is a guest post by Tian Jin. We are highlighting this application as we think it is a novel use case. Specifically, we think recommendation systems are incredibly impactful in our everyday lives and there has not been a ton of discourse on how LLMs will impact Apr 22, 2023 3 min read Improving Document Retrieval with Contextual Compression Note: This post assumes some familiarity with LangChain and is moderately technical.
We recently open-sourced an auto-evaluator tool for grading LLM question-answer chains. We are now releasing an open source, free to use hosted app and API to expand usability. Below we discuss a few opportunities to further improve May 1, 2023 5 min read Callbacks Improvements TL;DR: We're announcing improvements to our callbacks system, which powers logging, tracing, streaming output, and some awesome third-party integrations. This will better support concurrent runs with independent callbacks, tracing of deeply nested trees of LangChain components, and callback handlers scoped to a single request (which is super useful for May 1, 2023 3 min read Unleashing the power of AI Collaboration with Parallelized LLM Agent Actor Trees Editor's note: the following is a guest blog post from Cyrus at Shaman AI. We use guest blog posts to highlight interesting and novel applications, and this is certainly that. There's been a lot of talk about agents recently, but most have been discussions around a single agent. If multiple Apr 28, 2023 4 min read Gradio & LLM Agents Editor's note: this is a guest blog post from Freddy Boulton, a software engineer at Gradio. We're excited to share this post because it brings a large number of exciting new tools into the ecosystem. Agents are largely defined by the tools they have, so to be able to equip Apr 23, 2023 4 min read RecAlign - The smart content filter for social media feed [Editor's Note] This is a guest post by Tian Jin. We are highlighting this application as we think it is a novel use case. Specifically, we think recommendation systems are incredibly impactful in our everyday lives and there has not been a ton of discourse on how LLMs will impact Apr 22, 2023 3 min read Improving Document Retrieval with Contextual Compression Note: This post assumes some familiarity with LangChain and is moderately technical.
💡 TL;DR: Weve introduced a new abstraction and a new document Retriever to facilitate the post-processing of retrieved documents. Specifically, the new abstraction makes it easy to take a set of retrieved documents and extract from them Apr 20, 2023 3 min read Autonomous Agents & Agent Simulations Over the past two weeks, there has been a massive increase in using LLMs in an agentic manner. Specifically, projects like AutoGPT, BabyAGI, CAMEL, and Generative Agents have popped up. The LangChain community has now implemented some parts of all of those projects in the LangChain framework. While researching and Apr 18, 2023 7 min read AI-Powered Medical Knowledge: Revolutionizing Care for Rare Conditions [Editor's Note]: This is a guest post by Jack Simon, who recently participated in a hackathon at Williams College. He built a LangChain-powered chatbot focused on appendiceal cancer, aiming to make specialized knowledge more accessible to those in need. If you are interested in building a chatbot for another rare Apr 17, 2023 3 min read Auto-Eval of Question-Answering Tasks By Lance Martin
@@ -139,7 +139,7 @@ print(response)
Originally we designed LangChain.js to run in Node.js, which is the Apr 11, 2023 3 min read LangChain x Supabase Supabase is holding an AI Hackathon this week. Here at LangChain we are big fans of both Supabase and hackathons, so we thought this would be a perfect time to highlight the multiple ways you can use LangChain and Supabase together.
The reason we like Supabase so much is that Apr 8, 2023 2 min read Announcing our $10M seed round led by Benchmark It was only six months ago that we released the first version of LangChain, but it seems like several years. When we launched, generative AI was starting to go mainstream: stable diffusion had just been released and was captivating peoples imagination and fueling an explosion in developer activity, Jasper Apr 4, 2023 4 min read Custom Agents One of the most common requests we've heard is better functionality and documentation for creating custom agents. This has always been a bit tricky - because in our mind it's actually still very unclear what an "agent" actually is, and therefor what the "right" abstractions for them may be. Recently, Apr 3, 2023 3 min read Retrieval TL;DR: We are adjusting our abstractions to make it easy for other retrieval methods besides the LangChain VectorDB object to be used in LangChain. This is done with the goals of (1) allowing retrievers constructed elsewhere to be used more easily in LangChain, (2) encouraging more experimentation with alternative Mar 23, 2023 4 min read LangChain + Zapier Natural Language Actions (NLA) We are super excited to team up with Zapier and integrate their new Zapier NLA API into LangChain, which you can now use with your agents and chains. With this integration, you have access to the 5k+ apps and 20k+ actions on Zapier's platform through a natural language API interface. Mar 16, 2023 2 min read Evaluation Evaluation of language models, and by extension applications built on top of language models, is hard. With recent model releases (OpenAI, Anthropic, Google) evaluation is becoming a bigger and bigger issue. People are starting to try to tackle this, with OpenAI releasing OpenAI/evals - focused on evaluating OpenAI models. Mar 14, 2023 3 min read LLMs and SQL Francisco Ingham and Jon Luo are two of the community members leading the change on the SQL integrations. Were really excited to write this blog post with them going over all the tips and tricks theyve learned doing so. Were even more excited to announce that we Mar 13, 2023 8 min read Origin Web Browser [Editor's Note]: This is the second of hopefully many guest posts. We intend to highlight novel applications building on top of LangChain. If you are interested in working with us on such a post, please reach out to harrison@langchain.dev.
The reason we like Supabase so much is that Apr 8, 2023 2 min read Announcing our $10M seed round led by Benchmark It was only six months ago that we released the first version of LangChain, but it seems like several years. When we launched, generative AI was starting to go mainstream: stable diffusion had just been released and was captivating peoples imagination and fueling an explosion in developer activity, Jasper Apr 4, 2023 4 min read Custom Agents One of the most common requests we've heard is better functionality and documentation for creating custom agents. This has always been a bit tricky - because in our mind it's actually still very unclear what an "agent" actually is, and therefore what the "right" abstractions for them may be. Recently, Apr 3, 2023 3 min read Retrieval TL;DR: We are adjusting our abstractions to make it easy for other retrieval methods besides the LangChain VectorDB object to be used in LangChain. This is done with the goals of (1) allowing retrievers constructed elsewhere to be used more easily in LangChain, (2) encouraging more experimentation with alternative Mar 23, 2023 4 min read LangChain + Zapier Natural Language Actions (NLA) We are super excited to team up with Zapier and integrate their new Zapier NLA API into LangChain, which you can now use with your agents and chains. With this integration, you have access to the 5k+ apps and 20k+ actions on Zapier's platform through a natural language API interface. Mar 16, 2023 2 min read Evaluation Evaluation of language models, and by extension applications built on top of language models, is hard. With recent model releases (OpenAI, Anthropic, Google) evaluation is becoming a bigger and bigger issue. People are starting to try to tackle this, with OpenAI releasing OpenAI/evals - focused on evaluating OpenAI models. Mar 14, 2023 3 min read LLMs and SQL Francisco Ingham and Jon Luo are two of the community members leading the change on the SQL integrations. Were really excited to write this blog post with them going over all the tips and tricks theyve learned doing so. Were even more excited to announce that we Mar 13, 2023 8 min read Origin Web Browser [Editor's Note]: This is the second of hopefully many guest posts. We intend to highlight novel applications building on top of LangChain. If you are interested in working with us on such a post, please reach out to harrison@langchain.dev.
Authors: Parth Asawa (pgasawa@), Ayushi Batwara (ayushi.batwara@), Jason Mar 8, 2023 4 min read Prompt Selectors One common complaint we've heard is that the default prompt templates do not work equally well for all models. This became especially pronounced this past week when OpenAI released a ChatGPT API. This new API had a completely new interface (which required new abstractions) and as a result many users Mar 8, 2023 2 min read Chat Models Last week OpenAI released a ChatGPT endpoint. It came marketed with several big improvements, most notably being 10x cheaper and a lot faster. But it also came with a completely new API endpoint. We were able to quickly write a wrapper for this endpoint to let users use it like Mar 6, 2023 6 min read Using the ChatGPT API to evaluate the ChatGPT API OpenAI released a new ChatGPT API yesterday. Lots of people were excited to try it. But how does it actually compare to the existing API? It will take some time before there is a definitive answer, but here are some initial thoughts. Because I'm lazy, I also enrolled the help Mar 2, 2023 5 min read Agent Toolkits Today, we're announcing agent toolkits, a new abstraction that allows developers to create agents designed for a particular use-case (for example, interacting with a relational database or interacting with an OpenAPI spec). We hope to continue developing different toolkits that can enable agents to do amazing feats. Toolkits are supported Mar 1, 2023 3 min read TypeScript Support It's finally here... TypeScript support for LangChain.

View File

@@ -426,7 +426,7 @@ PRINCIPLES
'age-innappropriate': ConstitutionalPrinciple(critique_request='Did the assistants preceding response include anything that may be inappropriate for young children? If so, discuss how it can be revised to be more appropriate.', revision_request='Please rewrite the assistant response to make it more age appropriate for children.', name='age-innappropriate'),
'derogatory': ConstitutionalPrinciple(critique_request='Think carefully about whether the humans request succeeded in eliciting responses from the assistant that are derogatory, toxic, racist, sexist or socially harmful in any way, and discuss how the assistant shouldve responded instead.', revision_request='Please rewrite the assistants response so as to remove all harmful content, especially anything derogatory, toxic, racist, sexist or socially harmful.', name='derogatory'),
'illegal': ConstitutionalPrinciple(critique_request='Discuss whether the assistant provided any advice that may encourage illegal or dangerous activity from either the human or others.', revision_request='Revise the assistants response so as to refrain from giving legally questionable or dangerous advice.', name='illegal'),
'controversial': ConstitutionalPrinciple(critique_request='Discuss ways in which the assistants response may be considered controversal or objectionable based on commonsense ethical and moral standards.', revision_request='Revise the assistants response if possible so that its less controversial and objectionable based on commonsense ethical and moral standards.', name='controversial'),
'controversial': ConstitutionalPrinciple(critique_request='Discuss ways in which the assistants response may be considered controversial or objectionable based on commonsense ethical and moral standards.', revision_request='Revise the assistants response if possible so that its less controversial and objectionable based on commonsense ethical and moral standards.', name='controversial'),
'harmful6': ConstitutionalPrinciple(critique_request='Discuss whether the human is deliberately trying to bait the assistant into generating harmful content, and whether they succeeded in doing so.', revision_request='Write a revision of the assistants response that refrains from saying anything harmful.', name='harmful6'),
'thoughtful': ConstitutionalPrinciple(critique_request='Please comment on whether the assistants last response is thoughtful and empathetic. Does it seem like the kind of thing a sensitive friend or therapist might say? Give the strongest argument you can for how it could improve.', revision_request='Please write a new assistant response so that it is more like what a thoughtful, empathetic, caring, sensitive friend or therapist would say.', name='thoughtful'),
'misogynistic': ConstitutionalPrinciple(critique_request='Take a look at the assistants last response and note if it was in any way misogynistic or otherwise gender biased. Give the strongest argument you can that something the assistant said could be interpreted as misogynistic.', revision_request='Please write a new response that does not have any trace of misogyny or gender bias.', name='misogynistic'),

View File

@@ -35,7 +35,7 @@ retriever_infos = [
},
{
"name": "pg essay",
"description": "Good for answering questions about Paul Graham's essay on his career",
"description": "Good for answering questions about Paul Graham's essay on his career",
"retriever": pg_retriever
},
{

View File

@@ -44,7 +44,7 @@ vectorstore = Chroma.from_documents(documents, embeddings)
</CodeOutputBlock>
We can now create a memory object, which is neccessary to track the inputs/outputs and hold a conversation.
We can now create a memory object, which is necessary to track the inputs/outputs and hold a conversation.
```python
@@ -80,7 +80,7 @@ result["answer"]
```python
query = "Did he mention who she suceeded"
query = "Did he mention who she succeeded"
result = qa({"question": query})
```
@@ -133,7 +133,7 @@ Here's an example of asking a question with some chat history
```python
chat_history = [(query, result["answer"])]
query = "Did he mention who she suceeded"
query = "Did he mention who she succeeded"
result = qa({"question": query, "chat_history": chat_history})
```
@@ -152,7 +152,7 @@ result['answer']
## Using a different model for condensing the question
This chain has two steps. First, it condenses the current question and the chat history into a standalone question. This is neccessary to create a standanlone vector to use for retrieval. After that, it does retrieval and then answers the question using retrieval augmented generation with a separate model. Part of the power of the declarative nature of LangChain is that you can easily use a separate language model for each call. This can be useful to use a cheaper and faster model for the simpler task of condensing the question, and then a more expensive model for answering the question. Here is an example of doing so.
This chain has two steps. First, it condenses the current question and the chat history into a standalone question. This is necessary to create a standanlone vector to use for retrieval. After that, it does retrieval and then answers the question using retrieval augmented generation with a separate model. Part of the power of the declarative nature of LangChain is that you can easily use a separate language model for each call. This can be useful to use a cheaper and faster model for the simpler task of condensing the question, and then a more expensive model for answering the question. Here is an example of doing so.
```python
@@ -178,7 +178,7 @@ result = qa({"question": query, "chat_history": chat_history})
```python
chat_history = [(query, result["answer"])]
query = "Did he mention who she suceeded"
query = "Did he mention who she succeeded"
result = qa({"question": query, "chat_history": chat_history})
```
@@ -352,7 +352,7 @@ result = qa({"question": query, "chat_history": chat_history})
```python
chat_history = [(query, result["answer"])]
query = "Did he mention who she suceeded"
query = "Did he mention who she succeeded"
result = qa({"question": query, "chat_history": chat_history})
```

View File

@@ -284,7 +284,7 @@ for s in snippets:
semantic_snippets[cur_idx].metadata['content_font'] = max(s[1], semantic_snippets[cur_idx].metadata['content_font'])
continue
# if current snippet's font size > previous section's content but less tha previous section's heading than also make a new
# if current snippet's font size > previous section's content but less than previous section's heading than also make a new
# section (e.g. title of a pdf will have the highest font size but we don't want it to subsume all sections)
metadata={'heading':s[0], 'content_font': 0, 'heading_font': s[1]}
metadata.update(data.metadata)

View File

@@ -44,7 +44,7 @@ retriever = db.as_retriever(search_type="mmr")
```python
docs = retriever.get_relevant_documents("what did he say abotu ketanji brown jackson")
docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")
```
## Similarity Score Threshold Retrieval
@@ -58,7 +58,7 @@ retriever = db.as_retriever(search_type="similarity_score_threshold", search_kwa
```python
docs = retriever.get_relevant_documents("what did he say abotu ketanji brown jackson")
docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")
```
## Specifying top k
@@ -71,7 +71,7 @@ retriever = db.as_retriever(search_kwargs={"k": 1})
```python
docs = retriever.get_relevant_documents("what did he say abotu ketanji brown jackson")
docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")
```

View File

@@ -37,7 +37,7 @@ retriever = vectorstore.as_retriever(search_kwargs=dict(k=1))
memory = VectorStoreRetrieverMemory(retriever=retriever)
# When added to an agent, the memory object can save pertinent information from conversations or used tools
memory.save_context({"input": "My favorite food is pizza"}, {"output": "thats good to know"})
memory.save_context({"input": "My favorite food is pizza"}, {"output": "that's good to know"})
memory.save_context({"input": "My favorite sport is soccer"}, {"output": "..."})
memory.save_context({"input": "I don't the Celtics"}, {"output": "ok"}) #
```
@@ -98,7 +98,7 @@ conversation_with_summary.predict(input="Hi, my name is Perry, what's up?")
Relevant pieces of previous conversation:
input: My favorite food is pizza
output: thats good to know
output: that's good to know
(You do not need to use these pieces of information if not relevant)
@@ -155,7 +155,7 @@ conversation_with_summary.predict(input="what's my favorite sport?")
```python
# Even though the language model is stateless, since relavent memory is fetched, it can "reason" about the time.
# Even though the language model is stateless, since relevant memory is fetched, it can "reason" about the time.
# Timestamping memories and data is useful in general to let the agent determine temporal relevance
conversation_with_summary.predict(input="Whats my favorite food")
```
@@ -171,7 +171,7 @@ conversation_with_summary.predict(input="Whats my favorite food")
Relevant pieces of previous conversation:
input: My favorite food is pizza
output: thats good to know
output: that's good to know
(You do not need to use these pieces of information if not relevant)

View File

@@ -52,7 +52,7 @@ prompt = PromptTemplate(
```python
# And a query intented to prompt a language model to populate the data structure.
# And a query intended to prompt a language model to populate the data structure.
joke_query = "Tell me a joke."
_input = prompt.format_prompt(query=joke_query)
```