Neo4j Advanced RAG template (#12794)

Todo:

- [x] Docs
This commit is contained in:
Tomaz Bratanic
2023-11-03 21:22:55 +01:00
committed by GitHub
parent 83cee2cec4
commit 0dbdb8498a
10 changed files with 1887 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
from neo4j_advanced_rag.chain import chain
__all__ = ["chain"]

View File

@@ -0,0 +1,51 @@
from operator import itemgetter
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import ConfigurableField, RunnableParallel
from neo4j_advanced_rag.retrievers import (
hypothetic_question_vectorstore,
parent_vectorstore,
summary_vectorstore,
typical_rag,
)
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
retriever = typical_rag.as_retriever().configurable_alternatives(
ConfigurableField(id="strategy"),
default_key="typical_rag",
parent_strategy=parent_vectorstore.as_retriever(),
hypothetical_questions=hypothetic_question_vectorstore.as_retriever(),
summary_strategy=summary_vectorstore.as_retriever(),
)
chain = (
RunnableParallel(
{
"context": itemgetter("question") | retriever,
"question": itemgetter("question"),
}
)
| prompt
| model
| StrOutputParser()
)
# Add typing for input
class Question(BaseModel):
question: str
chain = chain.with_types(input_type=Question)

View File

@@ -0,0 +1,49 @@
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Neo4jVector
# Typical RAG retriever
typical_rag = Neo4jVector.from_existing_index(
OpenAIEmbeddings(), index_name="typical_rag"
)
# Parent retriever
parent_query = """
MATCH (node)<-[:HAS_CHILD]-(parent)
WITH parent, max(score) AS score // deduplicate parents
RETURN parent.text AS text, score, {} AS metadata LIMIT 1
"""
parent_vectorstore = Neo4jVector.from_existing_index(
OpenAIEmbeddings(),
index_name="parent_document",
retrieval_query=parent_query,
)
# Hypothetic questions retriever
hypothetic_question_query = """
MATCH (node)<-[:HAS_QUESTION]-(parent)
WITH parent, max(score) AS score // deduplicate parents
RETURN parent.text AS text, score, {} AS metadata
"""
hypothetic_question_vectorstore = Neo4jVector.from_existing_index(
OpenAIEmbeddings(),
index_name="hypothetical_questions",
retrieval_query=hypothetic_question_query,
)
# Summary retriever
summary_query = """
MATCH (node)<-[:HAS_SUMMARY]-(parent)
WITH parent, max(score) AS score // deduplicate parents
RETURN parent.text AS text, score, {} AS metadata
"""
summary_vectorstore = Neo4jVector.from_existing_index(
OpenAIEmbeddings(),
index_name="summary",
retrieval_query=summary_query,
)