diff --git a/docs/docs/integrations/providers/cohere.mdx b/docs/docs/integrations/providers/cohere.mdx index 69e8d0b4d97..4fe6a436421 100644 --- a/docs/docs/integrations/providers/cohere.mdx +++ b/docs/docs/integrations/providers/cohere.mdx @@ -11,28 +11,57 @@ pip install cohere Get a [Cohere api key](https://dashboard.cohere.ai/) and set it as an environment variable (`COHERE_API_KEY`) +## Cohere langchain integrations -## LLM +|API|description|Endpoint docs|Import|Example usage| +|---|---|---|---|---| +|Chat|Build chat bots|[chat](https://docs.cohere.com/reference/chat)|`from langchain.chat_models import ChatCohere`|[cohere.ipynb](/docs/docs/integrations/chat/cohere.ipynb)| +|LLM|Generate text|[generate](https://docs.cohere.com/reference/generate)|`from langchain.llms import Cohere`|[cohere.ipynb](/docs/docs/integrations/llms/cohere.ipynb)| +|RAG Retriever|Connect to external data sources|[chat + rag](https://docs.cohere.com/reference/chat)|`from langchain.retrievers import CohereRagRetriever`|[cohere.ipynb](/docs/docs/integrations/retrievers/cohere.ipynb)| +|Text Embedding|Embed strings to vectors|[embed](https://docs.cohere.com/reference/embed)|`from langchain.embeddings import CohereEmbeddings`|[cohere.ipynb](/docs/docs/integrations/text_embedding/cohere.ipynb)| +|Rerank Retriever|Rank strings based on relevance|[rerank](https://docs.cohere.com/reference/rerank)|`from langchain.retrievers.document_compressors import CohereRerank`|[cohere.ipynb](/docs/docs/integrations/retrievers/cohere-reranker.ipynb)| + +## Quick copy examples + +### Chat + +```python +from langchain.chat_models import ChatCohere +from langchain.schema import HumanMessage +chat = ChatCohere() +messages = [HumanMessage(content="knock knock")] +print(chat(messages)) +``` + +### LLM -There exists an Cohere LLM wrapper, which you can access with -See a [usage example](/docs/integrations/llms/cohere). ```python from langchain.llms import Cohere + +llm = Cohere(model="command") +print(llm.invoke("Come up with a pet name")) ``` -## Text Embedding Model -There exists an Cohere Embedding model, which you can access with -```python -from langchain.embeddings import CohereEmbeddings -``` -For a more detailed walkthrough of this, see [this notebook](/docs/integrations/text_embedding/cohere) - -## Retriever - -See a [usage example](/docs/integrations/retrievers/cohere-reranker). +### RAG Retriever ```python -from langchain.retrievers.document_compressors import CohereRerank +from langchain.chat_models import ChatCohere +from langchain.retrievers import CohereRagRetriever +from langchain.schema.document import Document + +rag = CohereRagRetriever(llm=ChatCohere()) +print(rag.get_relevant_documents("What is cohere ai?")) +``` + +### Text Embedding + +```python +from langchain.chat_models import ChatCohere +from langchain.retrievers import CohereRagRetriever +from langchain.schema.document import Document + +rag = CohereRagRetriever(llm=ChatCohere()) +print(rag.get_relevant_documents("What is cohere ai?")) ```