diff --git a/docs/docs/integrations/vectorstores/astradb.ipynb b/docs/docs/integrations/vectorstores/astradb.ipynb
index 22db0166a85..812fbe29b38 100644
--- a/docs/docs/integrations/vectorstores/astradb.ipynb
+++ b/docs/docs/integrations/vectorstores/astradb.ipynb
@@ -455,68 +455,13 @@
"id": "734e683a",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "id": "9b3cc97b",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "08401498",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LangGraph is used for building stateful, agentic applications. It provides a framework that facilitates the development of such applications. Its capabilities make it a preferred choice for developers in this domain.'"
- ]
- },
- "execution_count": 21,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/chroma.ipynb b/docs/docs/integrations/vectorstores/chroma.ipynb
index d5fafe18825..8ca17147d0c 100644
--- a/docs/docs/integrations/vectorstores/chroma.ipynb
+++ b/docs/docs/integrations/vectorstores/chroma.ipynb
@@ -459,68 +459,13 @@
"id": "a2b7b73c",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "9aad065b",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "84a19f48",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LangGraph is used for building stateful, agentic applications. It provides a framework that supports the development of such applications efficiently.'"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/clickhouse.ipynb b/docs/docs/integrations/vectorstores/clickhouse.ipynb
index f3de48038c1..51367182053 100644
--- a/docs/docs/integrations/vectorstores/clickhouse.ipynb
+++ b/docs/docs/integrations/vectorstores/clickhouse.ipynb
@@ -356,57 +356,13 @@
"id": "57fade30",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "8a7fec6b",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "ae6871dc",
- "metadata": {},
- "outputs": [],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/couchbase.ipynb b/docs/docs/integrations/vectorstores/couchbase.ipynb
index e783d4dc4cd..a762de72ab0 100644
--- a/docs/docs/integrations/vectorstores/couchbase.ipynb
+++ b/docs/docs/integrations/vectorstores/couchbase.ipynb
@@ -674,57 +674,13 @@
"id": "28ab35ec",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "a6a849aa",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "e34c9e3a",
- "metadata": {},
- "outputs": [],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/elasticsearch.ipynb b/docs/docs/integrations/vectorstores/elasticsearch.ipynb
index ff4c11fc187..99065abdcc1 100644
--- a/docs/docs/integrations/vectorstores/elasticsearch.ipynb
+++ b/docs/docs/integrations/vectorstores/elasticsearch.ipynb
@@ -469,68 +469,13 @@
"id": "17b509ae",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "58e17804",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "01dac420",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LanGraph is used for building stateful, agentic applications. It serves as a framework to facilitate the development of exciting new projects.'"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LanGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/faiss.ipynb b/docs/docs/integrations/vectorstores/faiss.ipynb
index 175ed8060b0..f0aca8d0181 100644
--- a/docs/docs/integrations/vectorstores/faiss.ipynb
+++ b/docs/docs/integrations/vectorstores/faiss.ipynb
@@ -360,68 +360,13 @@
"id": "5edd1909",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "6b792eaa",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "1aca9435",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LangGraph is used for building stateful, agentic applications. It provides a framework that facilitates the development of these types of applications.'"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/milvus.ipynb b/docs/docs/integrations/vectorstores/milvus.ipynb
index b6c806e637b..0f4f1b378f0 100644
--- a/docs/docs/integrations/vectorstores/milvus.ipynb
+++ b/docs/docs/integrations/vectorstores/milvus.ipynb
@@ -393,68 +393,13 @@
"id": "8ac953f1",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 35,
- "id": "d17118c2",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "id": "7bbe3b95",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LangGraph is used for building stateful, agentic applications. It provides a framework that facilitates the development of such applications effectively.'"
- ]
- },
- "execution_count": 36,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/mongodb_atlas.ipynb b/docs/docs/integrations/vectorstores/mongodb_atlas.ipynb
index c71fbd6526c..f158b17f3a3 100644
--- a/docs/docs/integrations/vectorstores/mongodb_atlas.ipynb
+++ b/docs/docs/integrations/vectorstores/mongodb_atlas.ipynb
@@ -457,68 +457,13 @@
"id": "72312657",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 66,
- "id": "a42da723",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 67,
- "id": "80c1130f",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LangGraph is used for building stateful, agentic applications. It provides a framework that facilitates the development of such applications.'"
- ]
- },
- "execution_count": 67,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/pgvector.ipynb b/docs/docs/integrations/vectorstores/pgvector.ipynb
index d88add2147c..5dd27467269 100644
--- a/docs/docs/integrations/vectorstores/pgvector.ipynb
+++ b/docs/docs/integrations/vectorstores/pgvector.ipynb
@@ -434,68 +434,13 @@
"id": "7ecd77a0",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "f0b14168",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "a4eba12c",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'There are cats in the pond right now.'"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"Who is at the pond right now?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/pinecone.ipynb b/docs/docs/integrations/vectorstores/pinecone.ipynb
index 66416950652..29365946d4c 100644
--- a/docs/docs/integrations/vectorstores/pinecone.ipynb
+++ b/docs/docs/integrations/vectorstores/pinecone.ipynb
@@ -408,68 +408,13 @@
"id": "72990cb5",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "id": "f12560cb",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "262651fc",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LangGraph is used for building stateful, agentic applications. It provides a framework that facilitates the development of these types of applications.'"
- ]
- },
- "execution_count": 21,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/qdrant.ipynb b/docs/docs/integrations/vectorstores/qdrant.ipynb
index c0ccbe4f08e..fe5544e7e82 100644
--- a/docs/docs/integrations/vectorstores/qdrant.ipynb
+++ b/docs/docs/integrations/vectorstores/qdrant.ipynb
@@ -713,68 +713,13 @@
"id": "6ac07288",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "id": "07bd9785",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "d97f0c91",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LangGraph is used for building stateful, agentic applications. It provides a framework that facilitates the development of such applications.'"
- ]
- },
- "execution_count": 17,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/docs/docs/integrations/vectorstores/redis.ipynb b/docs/docs/integrations/vectorstores/redis.ipynb
index d2565beab59..6230bff240a 100644
--- a/docs/docs/integrations/vectorstores/redis.ipynb
+++ b/docs/docs/integrations/vectorstores/redis.ipynb
@@ -930,66 +930,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
- "outputs": [],
- "source": [
- "# | output: false\n",
- "# | echo: false\n",
- "from langchain_openai import ChatOpenAI\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-4o-mini\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'LangGraph is used for building stateful, agentic applications. It provides a framework to facilitate the development of such applications.'"
- ]
- },
- "execution_count": 18,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"What is LangGraph used for?\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{
diff --git a/libs/cli/langchain_cli/integration_template/docs/vectorstores.ipynb b/libs/cli/langchain_cli/integration_template/docs/vectorstores.ipynb
index c78091133fb..f259710b093 100644
--- a/libs/cli/langchain_cli/integration_template/docs/vectorstores.ipynb
+++ b/libs/cli/langchain_cli/integration_template/docs/vectorstores.ipynb
@@ -288,45 +288,13 @@
"id": "901c75dc",
"metadata": {},
"source": [
- "## Chain usage\n",
+ "## Usage for retrieval-augmented generation\n",
"\n",
- "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n",
+ "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
- "```{=mdx}\n",
- "import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
- "\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "619b5ef6",
- "metadata": {},
- "outputs": [],
- "source": [
- "from langchain_openai import ChatOpenAI\n",
- "from langchain import hub\n",
- "from langchain_core.output_parsers import StrOutputParser\n",
- "from langchain_core.runnables import RunnablePassthrough\n",
- "\n",
- "\n",
- "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n",
- "\n",
- "prompt = hub.pull(\"rlm/rag-prompt\")\n",
- "\n",
- "def format_docs(docs):\n",
- " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
- "\n",
- "rag_chain = (\n",
- " {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
- " | prompt\n",
- " | llm\n",
- " | StrOutputParser()\n",
- ")\n",
- "\n",
- "rag_chain.invoke(\"thud\")"
+ "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n",
+ "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n",
+ "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)"
]
},
{