add Hybrid retriever that not require any external service (#8108)

- Until now, hybrid search was limited to modules requiring external
services, such as Weaviate/Pinecone Hybrid Search. However, I have
developed a hybrid retriever that can merge a list of retrievers using
the [Reciprocal Rank
Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf)
algorithm. This new approach, similar to Weaviate hybrid search, does
not require the initialization of any external service.
  - Dependencies: No  - Twitter handle: dayuanjian21687

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Dayuan Jiang
2023-07-25 11:16:10 +09:00
committed by GitHub
parent 04e45f9cde
commit 125ae6d9de
4 changed files with 330 additions and 0 deletions

View File

@@ -6,6 +6,7 @@ from langchain.retrievers.chatgpt_plugin_retriever import ChatGPTPluginRetriever
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain.retrievers.docarray import DocArrayRetriever
from langchain.retrievers.elastic_search_bm25 import ElasticSearchBM25Retriever
from langchain.retrievers.ensemble import EnsembleRetriever
from langchain.retrievers.google_cloud_enterprise_search import (
GoogleCloudEnterpriseSearchRetriever,
)
@@ -64,4 +65,5 @@ __all__ = [
"ZepRetriever",
"ZillizRetriever",
"DocArrayRetriever",
"EnsembleRetriever",
]

View File

@@ -0,0 +1,184 @@
"""
Ensemble retriever that ensemble the results of
multiple retrievers by using weighted Reciprocal Rank Fusion
"""
from typing import Any, Dict, List
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain.schema import BaseRetriever, Document
class EnsembleRetriever(BaseRetriever):
"""
This class ensemble the results of multiple retrievers by using rank fusion.
Args:
retrievers: A list of retrievers to ensemble.
weights: A list of weights corresponding to the retrievers. Defaults to equal
weighting for all retrievers.
c: A constant added to the rank, controlling the balance between the importance
of high-ranked items and the consideration given to lower-ranked items.
Default is 60.
"""
retrievers: List[BaseRetriever]
weights: List[float]
c: int = 60
@root_validator(pre=True)
def set_weights(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if not values.get("weights"):
n_retrievers = len(values["retrievers"])
values["weights"] = [1 / n_retrievers] * n_retrievers
return values
def _get_relevant_documents(
self,
query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
) -> List[Document]:
"""
Get the relevant documents for a given query.
Args:
query: The query to search for.
Returns:
A list of reranked documents.
"""
# Get fused result of the retrievers.
fused_documents = self.rank_fusion(query, run_manager)
return fused_documents
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
) -> List[Document]:
"""
Asynchronously get the relevant documents for a given query.
Args:
query: The query to search for.
Returns:
A list of reranked documents.
"""
# Get fused result of the retrievers.
fused_documents = await self.arank_fusion(query, run_manager)
return fused_documents
def rank_fusion(
self, query: str, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""
Retrieve the results of the retrievers and use rank_fusion_func to get
the final result.
Args:
query: The query to search for.
Returns:
A list of reranked documents.
"""
# Get the results of all retrievers.
retriever_docs = [
retriever.get_relevant_documents(
query, callbacks=run_manager.get_child(tag=f"retriever_{i+1}")
)
for i, retriever in enumerate(self.retrievers)
]
# apply rank fusion
fused_documents = self.weighted_reciprocal_rank(retriever_docs)
return fused_documents
async def arank_fusion(
self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
"""
Asynchronously retrieve the results of the retrievers
and use rank_fusion_func to get the final result.
Args:
query: The query to search for.
Returns:
A list of reranked documents.
"""
# Get the results of all retrievers.
retriever_docs = [
await retriever.aget_relevant_documents(
query, callbacks=run_manager.get_child(tag=f"retriever_{i+1}")
)
for i, retriever in enumerate(self.retrievers)
]
# apply rank fusion
fused_documents = self.weighted_reciprocal_rank(retriever_docs)
return fused_documents
def weighted_reciprocal_rank(
self, doc_lists: List[List[Document]]
) -> List[Document]:
"""
Perform weighted Reciprocal Rank Fusion on multiple rank lists.
You can find more details about RRF here:
https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
Args:
doc_lists: A list of rank lists, where each rank list contains unique items.
Returns:
list: The final aggregated list of items sorted by their weighted RRF
scores in descending order.
"""
if len(doc_lists) != len(self.weights):
raise ValueError(
"Number of rank lists must be equal to the number of weights."
)
# Create a union of all unique documents in the input doc_lists
all_documents = set()
for doc_list in doc_lists:
for doc in doc_list:
all_documents.add(doc.page_content)
# Initialize the RRF score dictionary for each document
rrf_score_dic = {doc: 0.0 for doc in all_documents}
# Calculate RRF scores for each document
for doc_list, weight in zip(doc_lists, self.weights):
for rank, doc in enumerate(doc_list, start=1):
rrf_score = weight * (1 / (rank + self.c))
rrf_score_dic[doc.page_content] += rrf_score
# Sort documents by their RRF scores in descending order
sorted_documents = sorted(
rrf_score_dic.keys(), key=lambda x: rrf_score_dic[x], reverse=True
)
# Map the sorted page_content back to the original document objects
page_content_to_doc_map = {
doc.page_content: doc for doc_list in doc_lists for doc in doc_list
}
sorted_docs = [
page_content_to_doc_map[page_content] for page_content in sorted_documents
]
return sorted_docs

View File

@@ -0,0 +1,42 @@
import pytest
from langchain.retrievers.bm25 import BM25Retriever
from langchain.retrievers.ensemble import EnsembleRetriever
from langchain.schema import Document
@pytest.mark.requires("rank_bm25")
def test_ensemble_retriever_get_relevant_docs() -> None:
doc_list = [
"I like apples",
"I like oranges",
"Apples and oranges are fruits",
]
dummy_retriever = BM25Retriever.from_texts(doc_list)
dummy_retriever.k = 1
ensemble_retriever = EnsembleRetriever(
retrievers=[dummy_retriever, dummy_retriever]
)
docs = ensemble_retriever.get_relevant_documents("I like apples")
assert len(docs) == 1
@pytest.mark.requires("rank_bm25")
def test_weighted_reciprocal_rank() -> None:
doc1 = Document(page_content="1")
doc2 = Document(page_content="2")
dummy_retriever = BM25Retriever.from_texts(["1", "2"])
ensemble_retriever = EnsembleRetriever(
retrievers=[dummy_retriever, dummy_retriever], weights=[0.4, 0.5], c=0
)
result = ensemble_retriever.weighted_reciprocal_rank([[doc1, doc2], [doc2, doc1]])
assert result[0].page_content == "2"
assert result[1].page_content == "1"
ensemble_retriever.weights = [0.5, 0.4]
result = ensemble_retriever.weighted_reciprocal_rank([[doc1, doc2], [doc2, doc1]])
assert result[0].page_content == "1"
assert result[1].page_content == "2"