[HuggingFace Pipeline] add streaming support (#23852)

This commit is contained in:
Ethan Yang
2024-07-10 05:02:00 +08:00
committed by GitHub
parent 34a02efcf9
commit 13855ef0c3
5 changed files with 167 additions and 23 deletions

View File

@@ -2,11 +2,11 @@ from __future__ import annotations # type: ignore[import-not-found]
import importlib.util
import logging
from typing import Any, List, Mapping, Optional
from typing import Any, Iterator, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Extra
DEFAULT_MODEL_ID = "gpt2"
@@ -208,7 +208,7 @@ class HuggingFacePipeline(BaseLLM):
cuda_device_count,
)
if device is not None and device_map is not None and backend == "openvino":
logger.warning("Please set device for OpenVINO through: " "'model_kwargs'")
logger.warning("Please set device for OpenVINO through: `model_kwargs`")
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
@@ -299,3 +299,63 @@ class HuggingFacePipeline(BaseLLM):
return LLMResult(
generations=[[Generation(text=text)] for text in text_generations]
)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
from threading import Thread
import torch
from transformers import (
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
)
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
skip_prompt = kwargs.get("skip_prompt", True)
if stop is not None:
stop = self.pipeline.tokenizer.convert_tokens_to_ids(stop)
stopping_ids_list = stop or []
class StopOnTokens(StoppingCriteria):
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
**kwargs: Any,
) -> bool:
for stop_id in stopping_ids_list:
if input_ids[0][-1] == stop_id:
return True
return False
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
inputs = self.pipeline.tokenizer(prompt, return_tensors="pt")
streamer = TextIteratorStreamer(
self.pipeline.tokenizer,
timeout=60.0,
skip_prompt=skip_prompt,
skip_special_tokens=True,
)
generation_kwargs = dict(
inputs,
streamer=streamer,
stopping_criteria=stopping_criteria,
**pipeline_kwargs,
)
t1 = Thread(target=self.pipeline.model.generate, kwargs=generation_kwargs)
t1.start()
for char in streamer:
chunk = GenerationChunk(text=char)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk