mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 11:02:37 +00:00
community[minor]: Add LiteLLM Router Integration (#15588)
community: - **Description:** - Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM Router as a LangChain chat model. - Note: The existing ChatLiteLLM integration did not cover the LiteLLM Router class. - Add tests and Jupyter notebook. - **Issue:** None - **Dependencies:** Relies on existing ChatLiteLLM integration - **Twitter handle:** @bburgin_0 --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -0,0 +1,326 @@
|
||||
"""Test LiteLLM Router API wrapper."""
|
||||
import asyncio
|
||||
from copy import deepcopy
|
||||
from typing import Any, AsyncGenerator, Coroutine, Dict, List, Tuple, Union, cast
|
||||
|
||||
import pytest
|
||||
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
||||
from langchain_core.outputs import ChatGeneration, LLMResult
|
||||
|
||||
from langchain_community.chat_models.litellm_router import ChatLiteLLMRouter
|
||||
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
||||
|
||||
model_group = "gpt-4"
|
||||
fake_model_prefix = "azure/fake-deployment-name-"
|
||||
fake_models_names = [fake_model_prefix + suffix for suffix in ["1", "2"]]
|
||||
fake_api_key = "fakekeyvalue"
|
||||
fake_api_version = "XXXX-XX-XX"
|
||||
fake_api_base = "https://faketesturl/"
|
||||
fake_chunks = ["This is ", "a fake answer."]
|
||||
fake_answer = "".join(fake_chunks)
|
||||
token_usage_key_name = "token_usage"
|
||||
|
||||
model_list = [
|
||||
{
|
||||
"model_name": model_group,
|
||||
"litellm_params": {
|
||||
"model": fake_models_names[0],
|
||||
"api_key": fake_api_key,
|
||||
"api_version": fake_api_version,
|
||||
"api_base": fake_api_base,
|
||||
},
|
||||
},
|
||||
{
|
||||
"model_name": model_group,
|
||||
"litellm_params": {
|
||||
"model": fake_models_names[1],
|
||||
"api_key": fake_api_key,
|
||||
"api_version": fake_api_version,
|
||||
"api_base": fake_api_base,
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
class FakeCompletion:
|
||||
def __init__(self) -> None:
|
||||
self.seen_inputs: List[Any] = []
|
||||
|
||||
@staticmethod
|
||||
def _get_new_result_and_choices(
|
||||
base_result: Dict[str, Any],
|
||||
) -> Tuple[Dict[str, Any], List[Dict[str, Any]]]:
|
||||
result = deepcopy(base_result)
|
||||
choices = cast(List[Dict[str, Any]], result["choices"])
|
||||
return result, choices
|
||||
|
||||
@staticmethod
|
||||
def _get_next_result(
|
||||
agen: AsyncGenerator[Dict[str, Any], None],
|
||||
) -> Dict[str, Any]:
|
||||
coroutine = cast(Coroutine, agen.__anext__())
|
||||
return asyncio.run(coroutine)
|
||||
|
||||
async def _get_fake_results_agenerator(
|
||||
self, **kwargs: Any
|
||||
) -> AsyncGenerator[Dict[str, Any], None]:
|
||||
from litellm import Usage
|
||||
|
||||
self.seen_inputs.append(kwargs)
|
||||
base_result = {
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
}
|
||||
],
|
||||
"created": 0,
|
||||
"id": "",
|
||||
"model": model_group,
|
||||
"object": "chat.completion",
|
||||
}
|
||||
if kwargs["stream"]:
|
||||
for chunk_index in range(0, len(fake_chunks)):
|
||||
result, choices = self._get_new_result_and_choices(base_result)
|
||||
choice = choices[0]
|
||||
choice["delta"] = {
|
||||
"role": "assistant",
|
||||
"content": fake_chunks[chunk_index],
|
||||
"function_call": None,
|
||||
}
|
||||
choice["finish_reason"] = None
|
||||
# no usage here, since no usage from OpenAI API for streaming yet
|
||||
# https://community.openai.com/t/usage-info-in-api-responses/18862
|
||||
yield result
|
||||
|
||||
result, choices = self._get_new_result_and_choices(base_result)
|
||||
choice = choices[0]
|
||||
choice["delta"] = {}
|
||||
choice["finish_reason"] = "stop"
|
||||
# no usage here, since no usage from OpenAI API for streaming yet
|
||||
# https://community.openai.com/t/usage-info-in-api-responses/18862
|
||||
yield result
|
||||
else:
|
||||
result, choices = self._get_new_result_and_choices(base_result)
|
||||
choice = choices[0]
|
||||
choice["message"] = {
|
||||
"content": fake_answer,
|
||||
"role": "assistant",
|
||||
}
|
||||
choice["finish_reason"] = "stop"
|
||||
result["usage"] = Usage(
|
||||
completion_tokens=1, prompt_tokens=2, total_tokens=3
|
||||
)
|
||||
yield result
|
||||
|
||||
def completion(self, **kwargs: Any) -> Union[List, Dict[str, Any]]:
|
||||
agen = self._get_fake_results_agenerator(**kwargs)
|
||||
if kwargs["stream"]:
|
||||
results: List[Dict[str, Any]] = []
|
||||
while True:
|
||||
try:
|
||||
results.append(self._get_next_result(agen))
|
||||
except StopAsyncIteration:
|
||||
break
|
||||
return results
|
||||
else:
|
||||
# there is only one result for non-streaming
|
||||
return self._get_next_result(agen)
|
||||
|
||||
async def acompletion(
|
||||
self, **kwargs: Any
|
||||
) -> Union[AsyncGenerator[Dict[str, Any], None], Dict[str, Any]]:
|
||||
agen = self._get_fake_results_agenerator(**kwargs)
|
||||
if kwargs["stream"]:
|
||||
return agen
|
||||
else:
|
||||
# there is only one result for non-streaming
|
||||
return await agen.__anext__()
|
||||
|
||||
def check_inputs(self, expected_num_calls: int) -> None:
|
||||
assert len(self.seen_inputs) == expected_num_calls
|
||||
for kwargs in self.seen_inputs:
|
||||
metadata = kwargs["metadata"]
|
||||
|
||||
assert metadata["model_group"] == model_group
|
||||
|
||||
# LiteLLM router chooses one model name from the model_list
|
||||
assert kwargs["model"] in fake_models_names
|
||||
assert metadata["deployment"] in fake_models_names
|
||||
|
||||
assert kwargs["api_key"] == fake_api_key
|
||||
assert kwargs["api_version"] == fake_api_version
|
||||
assert kwargs["api_base"] == fake_api_base
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def fake_completion() -> FakeCompletion:
|
||||
"""Fake AI completion for testing."""
|
||||
import litellm
|
||||
|
||||
fake_completion = FakeCompletion()
|
||||
|
||||
# Turn off LiteLLM's built-in telemetry
|
||||
litellm.telemetry = False
|
||||
litellm.completion = fake_completion.completion
|
||||
litellm.acompletion = fake_completion.acompletion
|
||||
return fake_completion
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def litellm_router() -> Any:
|
||||
"""LiteLLM router for testing."""
|
||||
from litellm import Router
|
||||
|
||||
return Router(
|
||||
model_list=model_list,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_litellm_router_call(
|
||||
fake_completion: FakeCompletion, litellm_router: Any
|
||||
) -> None:
|
||||
"""Test valid call to LiteLLM Router."""
|
||||
chat = ChatLiteLLMRouter(router=litellm_router)
|
||||
message = HumanMessage(content="Hello")
|
||||
|
||||
response = chat([message])
|
||||
|
||||
assert isinstance(response, AIMessage)
|
||||
assert isinstance(response.content, str)
|
||||
assert response.content == fake_answer
|
||||
# no usage check here, since response is only an AIMessage
|
||||
fake_completion.check_inputs(expected_num_calls=1)
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_litellm_router_generate(
|
||||
fake_completion: FakeCompletion, litellm_router: Any
|
||||
) -> None:
|
||||
"""Test generate method of LiteLLM Router."""
|
||||
from litellm import Usage
|
||||
|
||||
chat = ChatLiteLLMRouter(router=litellm_router)
|
||||
chat_messages: List[List[BaseMessage]] = [
|
||||
[HumanMessage(content="How many toes do dogs have?")]
|
||||
]
|
||||
messages_copy = [messages.copy() for messages in chat_messages]
|
||||
|
||||
result: LLMResult = chat.generate(chat_messages)
|
||||
|
||||
assert isinstance(result, LLMResult)
|
||||
for generations in result.generations:
|
||||
assert len(generations) == 1
|
||||
for generation in generations:
|
||||
assert isinstance(generation, ChatGeneration)
|
||||
assert isinstance(generation.text, str)
|
||||
assert generation.message.content == generation.text
|
||||
assert generation.message.content == fake_answer
|
||||
assert chat_messages == messages_copy
|
||||
assert result.llm_output is not None
|
||||
assert result.llm_output[token_usage_key_name] == Usage(
|
||||
completion_tokens=1, prompt_tokens=2, total_tokens=3
|
||||
)
|
||||
fake_completion.check_inputs(expected_num_calls=1)
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_litellm_router_streaming(
|
||||
fake_completion: FakeCompletion, litellm_router: Any
|
||||
) -> None:
|
||||
"""Test streaming tokens from LiteLLM Router."""
|
||||
chat = ChatLiteLLMRouter(router=litellm_router, streaming=True)
|
||||
message = HumanMessage(content="Hello")
|
||||
|
||||
response = chat([message])
|
||||
|
||||
assert isinstance(response, AIMessage)
|
||||
assert isinstance(response.content, str)
|
||||
assert response.content == fake_answer
|
||||
# no usage check here, since response is only an AIMessage
|
||||
fake_completion.check_inputs(expected_num_calls=1)
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_litellm_router_streaming_callback(
|
||||
fake_completion: FakeCompletion, litellm_router: Any
|
||||
) -> None:
|
||||
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
||||
callback_handler = FakeCallbackHandler()
|
||||
chat = ChatLiteLLMRouter(
|
||||
router=litellm_router,
|
||||
streaming=True,
|
||||
callbacks=[callback_handler],
|
||||
verbose=True,
|
||||
)
|
||||
message = HumanMessage(content="Write me a sentence with 10 words.")
|
||||
|
||||
response = chat([message])
|
||||
|
||||
assert callback_handler.llm_streams > 1
|
||||
assert isinstance(response, AIMessage)
|
||||
assert isinstance(response.content, str)
|
||||
assert response.content == fake_answer
|
||||
# no usage check here, since response is only an AIMessage
|
||||
fake_completion.check_inputs(expected_num_calls=1)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.scheduled
|
||||
async def test_async_litellm_router(
|
||||
fake_completion: FakeCompletion, litellm_router: Any
|
||||
) -> None:
|
||||
"""Test async generation."""
|
||||
from litellm import Usage
|
||||
|
||||
chat = ChatLiteLLMRouter(router=litellm_router)
|
||||
message = HumanMessage(content="Hello")
|
||||
|
||||
response = await chat.agenerate([[message], [message]])
|
||||
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.generations) == 2
|
||||
for generations in response.generations:
|
||||
assert len(generations) == 1
|
||||
for generation in generations:
|
||||
assert isinstance(generation, ChatGeneration)
|
||||
assert isinstance(generation.text, str)
|
||||
assert generation.message.content == generation.text
|
||||
assert generation.message.content == fake_answer
|
||||
assert response.llm_output is not None
|
||||
assert response.llm_output[token_usage_key_name] == Usage(
|
||||
completion_tokens=2, prompt_tokens=4, total_tokens=6
|
||||
)
|
||||
fake_completion.check_inputs(expected_num_calls=2)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.scheduled
|
||||
async def test_async_litellm_router_streaming(
|
||||
fake_completion: FakeCompletion, litellm_router: Any
|
||||
) -> None:
|
||||
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
||||
callback_handler = FakeCallbackHandler()
|
||||
chat = ChatLiteLLMRouter(
|
||||
router=litellm_router,
|
||||
streaming=True,
|
||||
callbacks=[callback_handler],
|
||||
verbose=True,
|
||||
)
|
||||
message = HumanMessage(content="Hello")
|
||||
|
||||
response = await chat.agenerate([[message], [message]])
|
||||
|
||||
assert callback_handler.llm_streams > 0
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.generations) == 2
|
||||
for generations in response.generations:
|
||||
assert len(generations) == 1
|
||||
for generation in generations:
|
||||
assert isinstance(generation, ChatGeneration)
|
||||
assert isinstance(generation.text, str)
|
||||
assert generation.message.content == generation.text
|
||||
assert generation.message.content == fake_answer
|
||||
# no usage check here, since no usage from OpenAI API for streaming yet
|
||||
# https://community.openai.com/t/usage-info-in-api-responses/18862
|
||||
fake_completion.check_inputs(expected_num_calls=2)
|
Reference in New Issue
Block a user