mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 02:50:47 +00:00
docs: integrations
reference updates 13 (#25711)
Added missed provider pages and links. Fixed inconsistent formatting. Added arxiv references to docstirngs. --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This commit is contained in:
26
docs/docs/integrations/providers/falkordb.mdx
Normal file
26
docs/docs/integrations/providers/falkordb.mdx
Normal file
@@ -0,0 +1,26 @@
|
||||
# FalkorDB
|
||||
|
||||
>[FalkorDB](https://www.falkordb.com/) is a creator of the [FalkorDB](https://docs.falkordb.com/),
|
||||
> a low-latency Graph Database that delivers knowledge to GenAI.
|
||||
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
See [installation instructions here](/docs/integrations/graphs/falkordb/).
|
||||
|
||||
|
||||
## Graphs
|
||||
|
||||
See a [usage example](/docs/integrations/graphs/falkordb).
|
||||
|
||||
```python
|
||||
from langchain_community.graphs import FalkorDBGraph
|
||||
```
|
||||
|
||||
## Chains
|
||||
|
||||
See a [usage example](/docs/integrations/graphs/falkordb).
|
||||
|
||||
```python
|
||||
from langchain_community.chains.graph_qa.falkordb import FalkorDBQAChain
|
||||
```
|
22
docs/docs/integrations/providers/firecrawl.mdx
Normal file
22
docs/docs/integrations/providers/firecrawl.mdx
Normal file
@@ -0,0 +1,22 @@
|
||||
# FireCrawl
|
||||
|
||||
>[FireCrawl](https://firecrawl.dev/?ref=langchain) crawls and converts any website into LLM-ready data.
|
||||
> It crawls all accessible subpages and give you clean markdown
|
||||
> and metadata for each. No sitemap required.
|
||||
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
Install the python SDK:
|
||||
|
||||
```bash
|
||||
pip install firecrawl-py
|
||||
```
|
||||
|
||||
## Document loader
|
||||
|
||||
See a [usage example](/docs/integrations/document_loaders/firecrawl).
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders import FireCrawlLoader
|
||||
```
|
32
docs/docs/integrations/providers/friendly.md
Normal file
32
docs/docs/integrations/providers/friendly.md
Normal file
@@ -0,0 +1,32 @@
|
||||
# Friendli AI
|
||||
|
||||
>[Friendli AI](https://friendli.ai/) is a company that fine-tunes, deploys LLMs,
|
||||
> and serves a wide range of Generative AI use cases.
|
||||
|
||||
|
||||
## Installation and setup
|
||||
|
||||
- Install the integration package:
|
||||
|
||||
```
|
||||
pip install friendli-client
|
||||
```
|
||||
|
||||
- Sign in to [Friendli Suite](https://suite.friendli.ai/) to create a Personal Access Token,
|
||||
and set it as the `FRIENDLI_TOKEN` environment.
|
||||
|
||||
## Chat models
|
||||
|
||||
See a [usage example](/docs/integrations/chat/friendli).
|
||||
|
||||
```python
|
||||
from langchain_community.chat_models.friendli import ChatFriendli
|
||||
```
|
||||
|
||||
## LLMs
|
||||
|
||||
See a [usage example](/docs/integrations/llms/friendli).
|
||||
|
||||
```python
|
||||
from langchain_community.llms.friendli import Friendli
|
||||
```
|
@@ -13,6 +13,19 @@ Install the Python partner package:
|
||||
pip install langchain-qdrant
|
||||
```
|
||||
|
||||
## Embedding models
|
||||
|
||||
### FastEmbedSparse
|
||||
|
||||
```python
|
||||
from langchain_qdrant import FastEmbedSparse
|
||||
```
|
||||
|
||||
### SparseEmbeddings
|
||||
|
||||
```python
|
||||
from langchain_qdrant import SparseEmbeddings
|
||||
```
|
||||
|
||||
## Vector Store
|
||||
|
||||
|
@@ -7,7 +7,9 @@
|
||||
"source": [
|
||||
"# Faiss\n",
|
||||
"\n",
|
||||
">[Facebook AI Similarity Search (FAISS)](https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/) is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning.\n",
|
||||
">[Facebook AI Similarity Search (FAISS)](https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/) is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also includes supporting code for evaluation and parameter tuning.\n",
|
||||
">\n",
|
||||
">See [The FAISS Library](https://arxiv.org/pdf/2401.08281) paper.\n",
|
||||
"\n",
|
||||
"You can find the FAISS documentation at [this page](https://faiss.ai/).\n",
|
||||
"\n",
|
||||
@@ -528,7 +530,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@@ -7,7 +7,9 @@
|
||||
"source": [
|
||||
"# Faiss (Async)\n",
|
||||
"\n",
|
||||
">[Facebook AI Similarity Search (Faiss)](https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/) is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning.\n",
|
||||
">[Facebook AI Similarity Search (Faiss)](https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/) is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also includes supporting code for evaluation and parameter tuning.\n",
|
||||
">\n",
|
||||
">See [The FAISS Library](https://arxiv.org/pdf/2401.08281) paper.\n",
|
||||
"\n",
|
||||
"[Faiss documentation](https://faiss.ai/).\n",
|
||||
"\n",
|
||||
|
Reference in New Issue
Block a user