anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)

Preserves string content chunks for non tool call requests for
convenience.

One thing - Anthropic events look like this:

```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```

Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.

We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?

If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?

CC @ccurme @efriis @baskaryan
This commit is contained in:
Jacob Lee
2024-06-14 09:14:43 -07:00
committed by GitHub
parent f40b2c6f9d
commit 181a61982f
2 changed files with 156 additions and 85 deletions

View File

@@ -146,6 +146,55 @@ async def test_abatch_tags() -> None:
assert isinstance(token.content, str)
async def test_async_tool_use() -> None:
llm = ChatAnthropic( # type: ignore[call-arg]
model=MODEL_NAME,
)
llm_with_tools = llm.bind_tools(
[
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
]
)
response = await llm_with_tools.ainvoke("what's the weather in san francisco, ca")
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
assert isinstance(response.tool_calls, list)
assert len(response.tool_calls) == 1
tool_call = response.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
# Test streaming
first = True
chunks = [] # type: ignore
async for chunk in llm_with_tools.astream(
"what's the weather in san francisco, ca"
):
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_call_chunks, list)
assert len(gathered.tool_call_chunks) == 1
tool_call_chunk = gathered.tool_call_chunks[0]
assert tool_call_chunk["name"] == "get_weather"
assert isinstance(tool_call_chunk["args"], str)
assert "location" in json.loads(tool_call_chunk["args"])
def test_batch() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
@@ -313,7 +362,7 @@ async def test_astreaming() -> None:
def test_tool_use() -> None:
llm = ChatAnthropic( # type: ignore[call-arg]
model="claude-3-opus-20240229",
model=MODEL_NAME,
)
llm_with_tools = llm.bind_tools(
@@ -339,20 +388,55 @@ def test_tool_use() -> None:
assert "location" in tool_call["args"]
# Test streaming
input = "how are you? what's the weather in san francisco, ca"
first = True
for chunk in llm_with_tools.stream("what's the weather in san francisco, ca"):
chunks = [] # type: ignore
for chunk in llm_with_tools.stream(input):
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
assert isinstance(gathered.content, list)
assert len(gathered.content) == 2
tool_use_block = None
for content_block in gathered.content:
assert isinstance(content_block, dict)
if content_block["type"] == "tool_use":
tool_use_block = content_block
break
assert tool_use_block is not None
assert tool_use_block["name"] == "get_weather"
assert "location" in json.loads(tool_use_block["partial_json"])
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_call_chunks, list)
assert len(gathered.tool_call_chunks) == 1
tool_call_chunk = gathered.tool_call_chunks[0]
assert tool_call_chunk["name"] == "get_weather"
assert isinstance(tool_call_chunk["args"], str)
assert "location" in json.loads(tool_call_chunk["args"])
assert isinstance(gathered.tool_calls, list)
assert len(gathered.tool_calls) == 1
tool_call = gathered.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
assert tool_call["id"] is not None
# Test passing response back to model
stream = llm_with_tools.stream(
[
input,
gathered,
ToolMessage(content="sunny and warm", tool_call_id=tool_call["id"]),
]
)
chunks = [] # type: ignore
first = True
for chunk in stream:
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
def test_anthropic_with_empty_text_block() -> None:
@@ -428,7 +512,7 @@ class GetWeather(BaseModel):
@pytest.mark.parametrize("tool_choice", ["GetWeather", "auto", "any"])
def test_anthropic_bind_tools_tool_choice(tool_choice: str) -> None:
chat_model = ChatAnthropic( # type: ignore[call-arg]
model="claude-3-sonnet-20240229",
model=MODEL_NAME,
)
chat_model_with_tools = chat_model.bind_tools([GetWeather], tool_choice=tool_choice)
response = chat_model_with_tools.invoke("what's the weather in ny and la")