mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-28 17:38:36 +00:00
General anthropic functions, steps towards experimental integration tests (#11727)
To match change in js here https://github.com/langchain-ai/langchainjs/pull/2892 Some integration tests need a bit more work in experimental:  Pretty sure the sqldatabase ones are an actual regression or change in interface because it's returning a placeholder. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
98c8516ef1
commit
1861cc7100
@ -18,6 +18,9 @@ test_watch:
|
||||
extended_tests:
|
||||
poetry run pytest --only-extended tests/unit_tests
|
||||
|
||||
integration_tests:
|
||||
poetry run pytest tests/integration_tests
|
||||
|
||||
|
||||
######################
|
||||
# LINTING AND FORMATTING
|
||||
|
@ -124,11 +124,17 @@ def _destrip(tool_input: Any) -> Any:
|
||||
|
||||
|
||||
class AnthropicFunctions(BaseChatModel):
|
||||
model: ChatAnthropic
|
||||
llm: BaseChatModel
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
return {"model": ChatAnthropic(**values)}
|
||||
values["llm"] = values.get("llm") or ChatAnthropic(**values)
|
||||
return values
|
||||
|
||||
@property
|
||||
def model(self) -> BaseChatModel:
|
||||
"""For backwards compatibility."""
|
||||
return self.llm
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
|
@ -84,5 +84,6 @@ addopts = "--strict-markers --strict-config --durations=5"
|
||||
# Registering custom markers.
|
||||
# https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers
|
||||
markers = [
|
||||
"requires: mark tests as requiring a specific library"
|
||||
"requires: mark tests as requiring a specific library",
|
||||
"asyncio: mark tests as requiring asyncio"
|
||||
]
|
||||
|
@ -39,7 +39,7 @@ from langchain_experimental.cpal.templates.univariate.narrative import (
|
||||
from langchain_experimental.cpal.templates.univariate.query import (
|
||||
template as query_template,
|
||||
)
|
||||
from tests.unit_tests.llms.fake_llm import FakeLLM
|
||||
from tests.unit_tests.fake_llm import FakeLLM
|
||||
|
||||
|
||||
class TestUnitCPALChain_MathWordProblems(unittest.TestCase):
|
||||
|
@ -1,8 +1,9 @@
|
||||
"""Test PAL chain."""
|
||||
|
||||
from langchain.chains.pal.base import PALChain
|
||||
from langchain.llms import OpenAI
|
||||
|
||||
from langchain_experimental.pal_chain.base import PALChain
|
||||
|
||||
|
||||
def test_math_prompt() -> None:
|
||||
"""Test math prompt."""
|
||||
|
@ -1,11 +1,12 @@
|
||||
"""Test SQL Database Chain."""
|
||||
from langchain.llms.openai import OpenAI
|
||||
from langchain.utilities.sql_database import SQLDatabase
|
||||
from libs.experimental.langchain_experimental.sql.base import (
|
||||
from sqlalchemy import Column, Integer, MetaData, String, Table, create_engine, insert
|
||||
|
||||
from langchain_experimental.sql.base import (
|
||||
SQLDatabaseChain,
|
||||
SQLDatabaseSequentialChain,
|
||||
)
|
||||
from sqlalchemy import Column, Integer, MetaData, String, Table, create_engine, insert
|
||||
|
||||
metadata_obj = MetaData()
|
||||
|
||||
|
@ -0,0 +1,109 @@
|
||||
"""Test AnthropicFunctions"""
|
||||
|
||||
import unittest
|
||||
|
||||
from langchain.chat_models.anthropic import ChatAnthropic
|
||||
from langchain.chat_models.bedrock import BedrockChat
|
||||
|
||||
from langchain_experimental.llms.anthropic_functions import AnthropicFunctions
|
||||
|
||||
|
||||
class TestAnthropicFunctions(unittest.TestCase):
|
||||
"""
|
||||
Test AnthropicFunctions with default llm (ChatAnthropic) as well as a passed-in llm
|
||||
"""
|
||||
|
||||
def test_default_chat_anthropic(self) -> None:
|
||||
base_model = AnthropicFunctions(model="claude-2")
|
||||
self.assertIsInstance(base_model.model, ChatAnthropic)
|
||||
|
||||
# bind functions
|
||||
model = base_model.bind(
|
||||
functions=[
|
||||
{
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, "
|
||||
"e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
}
|
||||
],
|
||||
function_call={"name": "get_current_weather"},
|
||||
)
|
||||
|
||||
res = model.invoke("What's the weather in San Francisco?")
|
||||
|
||||
function_call = res.additional_kwargs.get("function_call")
|
||||
assert function_call
|
||||
self.assertEqual(function_call.get("name"), "get_current_weather")
|
||||
self.assertEqual(
|
||||
function_call.get("arguments"),
|
||||
'{"location": "San Francisco, CA", "unit": "fahrenheit"}',
|
||||
)
|
||||
|
||||
def test_bedrock_chat_anthropic(self) -> None:
|
||||
"""
|
||||
const chatBedrock = new ChatBedrock({
|
||||
region: process.env.BEDROCK_AWS_REGION ?? "us-east-1",
|
||||
model: "anthropic.claude-v2",
|
||||
temperature: 0.1,
|
||||
credentials: {
|
||||
secretAccessKey: process.env.BEDROCK_AWS_SECRET_ACCESS_KEY!,
|
||||
accessKeyId: process.env.BEDROCK_AWS_ACCESS_KEY_ID!,
|
||||
},
|
||||
});"""
|
||||
llm = BedrockChat(
|
||||
model_id="anthropic.claude-v2",
|
||||
model_kwargs={"temperature": 0.1},
|
||||
region_name="us-east-1",
|
||||
)
|
||||
base_model = AnthropicFunctions(llm=llm)
|
||||
assert isinstance(base_model.model, BedrockChat)
|
||||
|
||||
# bind functions
|
||||
model = base_model.bind(
|
||||
functions=[
|
||||
{
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, "
|
||||
"e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
}
|
||||
],
|
||||
function_call={"name": "get_current_weather"},
|
||||
)
|
||||
|
||||
res = model.invoke("What's the weather in San Francisco?")
|
||||
|
||||
function_call = res.additional_kwargs.get("function_call")
|
||||
assert function_call
|
||||
self.assertEqual(function_call.get("name"), "get_current_weather")
|
||||
self.assertEqual(
|
||||
function_call.get("arguments"),
|
||||
'{"location": "San Francisco, CA", "unit": "fahrenheit"}',
|
||||
)
|
Loading…
Reference in New Issue
Block a user