mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-03 12:07:36 +00:00
templates: add gemini functions agent (#17141)
Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
@@ -0,0 +1,81 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
|
||||
from langchain_community.tools.tavily_search import TavilySearchResults
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
|
||||
# Create the tool
|
||||
search = TavilySearchAPIWrapper()
|
||||
description = """"A search engine optimized for comprehensive, accurate, \
|
||||
and trusted results. Useful for when you need to answer questions \
|
||||
about current events or about recent information. \
|
||||
Input should be a search query. \
|
||||
If the user is asking about something that you don't know about, \
|
||||
you should probably use this tool to see if that can provide any information."""
|
||||
tavily_tool = TavilySearchResults(api_wrapper=search, description=description)
|
||||
|
||||
tools = [tavily_tool]
|
||||
|
||||
llm = ChatGoogleGenerativeAI(temperature=0, model="gemini-pro")
|
||||
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
("user", "{input}"),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
]
|
||||
)
|
||||
|
||||
llm_with_tools = llm.bind(
|
||||
functions=[
|
||||
{
|
||||
"name": tavily_tool.name,
|
||||
"description": tavily_tool.description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"query": {"type": "string"}},
|
||||
"required": ["query"],
|
||||
},
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
buffer = []
|
||||
for human, ai in chat_history:
|
||||
buffer.append(HumanMessage(content=human))
|
||||
buffer.append(AIMessage(content=ai))
|
||||
return buffer
|
||||
|
||||
|
||||
agent = (
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
||||
"agent_scratchpad": lambda x: format_to_openai_function_messages(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
}
|
||||
| prompt
|
||||
| llm_with_tools
|
||||
| OpenAIFunctionsAgentOutputParser()
|
||||
)
|
||||
|
||||
|
||||
class AgentInput(BaseModel):
|
||||
input: str
|
||||
chat_history: List[Tuple[str, str]] = Field(
|
||||
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
||||
)
|
||||
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types(
|
||||
input_type=AgentInput
|
||||
)
|
Reference in New Issue
Block a user