langchain[major]: breaks some chains to remove hidden defaults (#20759)

Breaks some chains in langchain to remove hidden chat model / llm instantiation.
This commit is contained in:
Eugene Yurtsev 2024-04-23 11:11:40 -04:00 committed by GitHub
parent ad6b5f84e5
commit 1c89e45c14
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 61 additions and 19 deletions

View File

@ -2,7 +2,6 @@
from typing import List
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.llms.openai import OpenAI
from langchain_community.tools.vectorstore.tool import (
VectorStoreQATool,
VectorStoreQAWithSourcesTool,
@ -31,7 +30,7 @@ class VectorStoreToolkit(BaseToolkit):
"""Toolkit for interacting with a Vector Store."""
vectorstore_info: VectorStoreInfo = Field(exclude=True)
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
llm: BaseLanguageModel
class Config:
"""Configuration for this pydantic object."""
@ -65,7 +64,7 @@ class VectorStoreRouterToolkit(BaseToolkit):
"""Toolkit for routing between Vector Stores."""
vectorstores: List[VectorStoreInfo] = Field(exclude=True)
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
llm: BaseLanguageModel
class Config:
"""Configuration for this pydantic object."""

View File

@ -4,7 +4,6 @@ from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from langchain_community.llms.openai import OpenAI
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.pydantic_v1 import Extra, root_validator
@ -68,8 +67,11 @@ class NatBotChain(Chain):
@classmethod
def from_default(cls, objective: str, **kwargs: Any) -> NatBotChain:
"""Load with default LLMChain."""
llm = OpenAI(temperature=0.5, best_of=10, n=3, max_tokens=50)
return cls.from_llm(llm, objective, **kwargs)
raise NotImplementedError(
"This method is no longer implemented. Please use from_llm."
"llm = OpenAI(temperature=0.5, best_of=10, n=3, max_tokens=50)"
"For example, NatBotChain.from_llm(llm, objective)"
)
@classmethod
def from_llm(

View File

@ -6,7 +6,6 @@ from collections import defaultdict
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import requests
from langchain_community.chat_models import ChatOpenAI
from langchain_community.utilities.openapi import OpenAPISpec
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
@ -272,9 +271,12 @@ def get_openapi_chain(
if isinstance(spec, str):
raise ValueError(f"Unable to parse spec from source {spec}")
openai_fns, call_api_fn = openapi_spec_to_openai_fn(spec)
llm = llm or ChatOpenAI(
model="gpt-3.5-turbo-0613",
)
if not llm:
raise ValueError(
"Must provide an LLM for this chain.For example,\n"
"from langchain_openai import ChatOpenAI\n"
"llm = ChatOpenAI()\n"
)
prompt = prompt or ChatPromptTemplate.from_template(
"Use the provided API's to respond to this user query:\n\n{query}"
)

View File

@ -3,7 +3,6 @@ from __future__ import annotations
from typing import Any, Dict, List, Mapping, Optional
from langchain_community.chat_models import ChatOpenAI
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate
from langchain_core.retrievers import BaseRetriever
@ -42,6 +41,8 @@ class MultiRetrievalQAChain(MultiRouteChain):
default_retriever: Optional[BaseRetriever] = None,
default_prompt: Optional[PromptTemplate] = None,
default_chain: Optional[Chain] = None,
*,
default_chain_llm: Optional[BaseLanguageModel] = None,
**kwargs: Any,
) -> MultiRetrievalQAChain:
if default_prompt and not default_retriever:
@ -78,8 +79,20 @@ class MultiRetrievalQAChain(MultiRouteChain):
prompt = PromptTemplate(
template=prompt_template, input_variables=["history", "query"]
)
if default_chain_llm is None:
raise NotImplementedError(
"conversation_llm must be provided if default_chain is not "
"specified. This API has been changed to avoid instantiating "
"default LLMs on behalf of users."
"You can provide a conversation LLM like so:\n"
"from langchain_openai import ChatOpenAI\n"
"llm = ChatOpenAI()"
)
_default_chain = ConversationChain(
llm=ChatOpenAI(), prompt=prompt, input_key="query", output_key="result"
llm=default_chain_llm,
prompt=prompt,
input_key="query",
output_key="result",
)
return cls(
router_chain=router_chain,

View File

@ -1,8 +1,6 @@
from typing import Any, Dict, List, Optional, Type
from langchain_community.document_loaders.base import BaseLoader
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.llms.openai import OpenAI
from langchain_community.vectorstores.inmemory import InMemoryVectorStore
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
@ -38,7 +36,14 @@ class VectorStoreIndexWrapper(BaseModel):
**kwargs: Any,
) -> str:
"""Query the vectorstore."""
llm = llm or OpenAI(temperature=0)
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQA.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
@ -53,7 +58,14 @@ class VectorStoreIndexWrapper(BaseModel):
**kwargs: Any,
) -> str:
"""Query the vectorstore."""
llm = llm or OpenAI(temperature=0)
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQA.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
@ -68,7 +80,14 @@ class VectorStoreIndexWrapper(BaseModel):
**kwargs: Any,
) -> dict:
"""Query the vectorstore and get back sources."""
llm = llm or OpenAI(temperature=0)
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQAWithSourcesChain.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
@ -83,7 +102,14 @@ class VectorStoreIndexWrapper(BaseModel):
**kwargs: Any,
) -> dict:
"""Query the vectorstore and get back sources."""
llm = llm or OpenAI(temperature=0)
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQAWithSourcesChain.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
@ -95,7 +121,7 @@ class VectorstoreIndexCreator(BaseModel):
"""Logic for creating indexes."""
vectorstore_cls: Type[VectorStore] = InMemoryVectorStore
embedding: Embeddings = Field(default_factory=OpenAIEmbeddings)
embedding: Embeddings
text_splitter: TextSplitter = Field(default_factory=_get_default_text_splitter)
vectorstore_kwargs: dict = Field(default_factory=dict)