mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-19 09:30:15 +00:00
unit tests
This commit is contained in:
parent
d662b095ca
commit
1d10d0d66f
@ -2833,13 +2833,13 @@ def _construct_lc_result_from_response_api(response: Response) -> ChatResult:
|
||||
)
|
||||
}
|
||||
# for compatibility with chat completion calls.
|
||||
response_metadata["model_name"] = response.get("model")
|
||||
response_metadata["model_name"] = response_metadata.get("model")
|
||||
if response.usage:
|
||||
usage_metadata = _create_usage_metadata_responses(response.usage.model_dump())
|
||||
else:
|
||||
usage_metadata = None
|
||||
|
||||
content_blocks = []
|
||||
content_blocks: list = []
|
||||
tool_calls = []
|
||||
invalid_tool_calls = []
|
||||
additional_kwargs: dict = {}
|
||||
@ -2898,7 +2898,7 @@ def _construct_lc_result_from_response_api(response: Response) -> ChatResult:
|
||||
else:
|
||||
additional_kwargs["tool_outputs"] = [tool_output]
|
||||
message = AIMessage(
|
||||
content=content_blocks or None, # type: ignore[arg-type]
|
||||
content=content_blocks,
|
||||
id=msg_id,
|
||||
usage_metadata=usage_metadata,
|
||||
response_metadata=response_metadata,
|
||||
|
@ -1286,7 +1286,7 @@ def test_web_search() -> None:
|
||||
llm.invoke(
|
||||
"what about a negative one",
|
||||
tools=[{"type": "web_search_preview"}],
|
||||
response_id=response.response_metadata["id"]
|
||||
response_id=response.response_metadata["id"],
|
||||
)
|
||||
_check_response(response)
|
||||
|
||||
|
@ -3,7 +3,7 @@
|
||||
import json
|
||||
from functools import partial
|
||||
from types import TracebackType
|
||||
from typing import Any, Dict, List, Literal, Optional, Type, Union
|
||||
from typing import Any, Dict, List, Literal, Optional, Type, Union, cast
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
@ -19,13 +19,29 @@ from langchain_core.messages import (
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.messages.ai import UsageMetadata
|
||||
from langchain_core.outputs import ChatGeneration
|
||||
from langchain_core.outputs import ChatGeneration, ChatResult
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
from openai.types.responses import ResponseOutputMessage
|
||||
from openai.types.responses.response import IncompleteDetails, Response, ResponseUsage
|
||||
from openai.types.responses.response_error import ResponseError
|
||||
from openai.types.responses.response_file_search_tool_call import (
|
||||
ResponseFileSearchToolCall,
|
||||
Result,
|
||||
)
|
||||
from openai.types.responses.response_function_tool_call import ResponseFunctionToolCall
|
||||
from openai.types.responses.response_function_web_search import (
|
||||
ResponseFunctionWebSearch,
|
||||
)
|
||||
from openai.types.responses.response_output_refusal import ResponseOutputRefusal
|
||||
from openai.types.responses.response_output_text import ResponseOutputText
|
||||
from openai.types.responses.response_usage import OutputTokensDetails
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_openai.chat_models.base import (
|
||||
_FUNCTION_CALL_IDS_MAP_KEY,
|
||||
_construct_lc_result_from_response_api,
|
||||
_convert_dict_to_message,
|
||||
_convert_message_to_dict,
|
||||
_convert_to_openai_response_format,
|
||||
@ -862,7 +878,7 @@ def test_nested_structured_output_strict() -> None:
|
||||
|
||||
setup: str
|
||||
punchline: str
|
||||
self_evaluation: SelfEvaluation
|
||||
_evaluation: SelfEvaluation
|
||||
|
||||
llm.with_structured_output(JokeWithEvaluation, method="json_schema")
|
||||
|
||||
@ -936,3 +952,497 @@ def test_structured_outputs_parser() -> None:
|
||||
assert isinstance(deserialized, ChatGeneration)
|
||||
result = output_parser.invoke(deserialized.message)
|
||||
assert result == parsed_response
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_error_handling() -> None:
|
||||
"""Test that errors in the response are properly raised."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
error=ResponseError(message="Test error", code="server_error"),
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[],
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
_construct_lc_result_from_response_api(response)
|
||||
|
||||
assert "Test error" in str(excinfo.value)
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_basic_text_response() -> None:
|
||||
"""Test a basic text response with no tools or special features."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseOutputMessage(
|
||||
type="message",
|
||||
id="msg_123",
|
||||
content=[
|
||||
ResponseOutputText(
|
||||
type="output_text", text="Hello, world!", annotations=[]
|
||||
)
|
||||
],
|
||||
role="assistant",
|
||||
status="completed",
|
||||
)
|
||||
],
|
||||
usage=ResponseUsage(
|
||||
input_tokens=10,
|
||||
output_tokens=3,
|
||||
total_tokens=13,
|
||||
output_tokens_details=OutputTokensDetails(reasoning_tokens=0),
|
||||
),
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
assert isinstance(result, ChatResult)
|
||||
assert len(result.generations) == 1
|
||||
assert isinstance(result.generations[0], ChatGeneration)
|
||||
assert isinstance(result.generations[0].message, AIMessage)
|
||||
assert result.generations[0].message.content == [
|
||||
{"type": "text", "text": "Hello, world!", "annotations": []}
|
||||
]
|
||||
assert result.generations[0].message.id == "msg_123"
|
||||
assert result.generations[0].message.usage_metadata
|
||||
assert result.generations[0].message.usage_metadata["input_tokens"] == 10
|
||||
assert result.generations[0].message.usage_metadata["output_tokens"] == 3
|
||||
assert result.generations[0].message.usage_metadata["total_tokens"] == 13
|
||||
assert result.generations[0].message.response_metadata["id"] == "resp_123"
|
||||
assert result.generations[0].message.response_metadata["model_name"] == "gpt-4o"
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_multiple_text_blocks() -> None:
|
||||
"""Test a response with multiple text blocks."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseOutputMessage(
|
||||
type="message",
|
||||
id="msg_123",
|
||||
content=[
|
||||
ResponseOutputText(
|
||||
type="output_text", text="First part", annotations=[]
|
||||
),
|
||||
ResponseOutputText(
|
||||
type="output_text", text="Second part", annotations=[]
|
||||
),
|
||||
],
|
||||
role="assistant",
|
||||
status="completed",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
assert len(result.generations[0].message.content) == 2
|
||||
assert result.generations[0].message.content[0]["text"] == "First part" # type: ignore
|
||||
assert result.generations[0].message.content[1]["text"] == "Second part" # type: ignore
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_refusal_response() -> None:
|
||||
"""Test a response with a refusal."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseOutputMessage(
|
||||
type="message",
|
||||
id="msg_123",
|
||||
content=[
|
||||
ResponseOutputRefusal(
|
||||
type="refusal", refusal="I cannot assist with that request."
|
||||
)
|
||||
],
|
||||
role="assistant",
|
||||
status="completed",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
assert result.generations[0].message.content == []
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["refusal"]
|
||||
== "I cannot assist with that request."
|
||||
)
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_function_call_valid_json() -> None:
|
||||
"""Test a response with a valid function call."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseFunctionToolCall(
|
||||
type="function_call",
|
||||
id="func_123",
|
||||
call_id="call_123",
|
||||
name="get_weather",
|
||||
arguments='{"location": "New York", "unit": "celsius"}',
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
msg: AIMessage = cast(AIMessage, result.generations[0].message)
|
||||
assert len(msg.tool_calls) == 1
|
||||
assert msg.tool_calls[0]["type"] == "tool_call"
|
||||
assert msg.tool_calls[0]["name"] == "get_weather"
|
||||
assert msg.tool_calls[0]["id"] == "call_123"
|
||||
assert msg.tool_calls[0]["args"] == {"location": "New York", "unit": "celsius"}
|
||||
assert _FUNCTION_CALL_IDS_MAP_KEY in result.generations[0].message.additional_kwargs
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs[_FUNCTION_CALL_IDS_MAP_KEY][
|
||||
"call_123"
|
||||
]
|
||||
== "func_123"
|
||||
)
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_function_call_invalid_json() -> None:
|
||||
"""Test a response with an invalid JSON function call."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseFunctionToolCall(
|
||||
type="function_call",
|
||||
id="func_123",
|
||||
call_id="call_123",
|
||||
name="get_weather",
|
||||
arguments='{"location": "New York", "unit": "celsius"',
|
||||
# Missing closing brace
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
msg: AIMessage = cast(AIMessage, result.generations[0].message)
|
||||
assert len(msg.invalid_tool_calls) == 1
|
||||
assert msg.invalid_tool_calls[0]["type"] == "invalid_tool_call"
|
||||
assert msg.invalid_tool_calls[0]["name"] == "get_weather"
|
||||
assert msg.invalid_tool_calls[0]["id"] == "call_123"
|
||||
assert (
|
||||
msg.invalid_tool_calls[0]["args"]
|
||||
== '{"location": "New York", "unit": "celsius"'
|
||||
)
|
||||
assert "error" in msg.invalid_tool_calls[0]
|
||||
assert _FUNCTION_CALL_IDS_MAP_KEY in result.generations[0].message.additional_kwargs
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_complex_response() -> None:
|
||||
"""Test a complex response with multiple output types."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseOutputMessage(
|
||||
type="message",
|
||||
id="msg_123",
|
||||
content=[
|
||||
ResponseOutputText(
|
||||
type="output_text",
|
||||
text="Here's the information you requested:",
|
||||
annotations=[],
|
||||
)
|
||||
],
|
||||
role="assistant",
|
||||
status="completed",
|
||||
),
|
||||
ResponseFunctionToolCall(
|
||||
type="function_call",
|
||||
id="func_123",
|
||||
call_id="call_123",
|
||||
name="get_weather",
|
||||
arguments='{"location": "New York"}',
|
||||
),
|
||||
],
|
||||
metadata=dict(key1="value1", key2="value2"),
|
||||
incomplete_details=IncompleteDetails(reason="max_output_tokens"),
|
||||
status="completed",
|
||||
user="user_123",
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
# Check message content
|
||||
assert result.generations[0].message.content == [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Here's the information you requested:",
|
||||
"annotations": [],
|
||||
}
|
||||
]
|
||||
|
||||
# Check tool calls
|
||||
msg: AIMessage = cast(AIMessage, result.generations[0].message)
|
||||
assert len(msg.tool_calls) == 1
|
||||
assert msg.tool_calls[0]["name"] == "get_weather"
|
||||
|
||||
# Check metadata
|
||||
assert result.generations[0].message.response_metadata["id"] == "resp_123"
|
||||
assert result.generations[0].message.response_metadata["metadata"] == {
|
||||
"key1": "value1",
|
||||
"key2": "value2",
|
||||
}
|
||||
assert result.generations[0].message.response_metadata["incomplete_details"] == {
|
||||
"reason": "max_output_tokens"
|
||||
}
|
||||
assert result.generations[0].message.response_metadata["status"] == "completed"
|
||||
assert result.generations[0].message.response_metadata["user"] == "user_123"
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_no_usage_metadata() -> None:
|
||||
"""Test a response without usage metadata."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseOutputMessage(
|
||||
type="message",
|
||||
id="msg_123",
|
||||
content=[
|
||||
ResponseOutputText(
|
||||
type="output_text", text="Hello, world!", annotations=[]
|
||||
)
|
||||
],
|
||||
role="assistant",
|
||||
status="completed",
|
||||
)
|
||||
],
|
||||
# No usage field
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
assert cast(AIMessage, result.generations[0].message).usage_metadata is None
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_web_search_response() -> None:
|
||||
"""Test a response with web search output."""
|
||||
from openai.types.responses.response_function_web_search import (
|
||||
ResponseFunctionWebSearch,
|
||||
)
|
||||
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseFunctionWebSearch(
|
||||
id="websearch_123", type="web_search_call", status="completed"
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
assert "tool_outputs" in result.generations[0].message.additional_kwargs
|
||||
assert len(result.generations[0].message.additional_kwargs["tool_outputs"]) == 1
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0]["type"]
|
||||
== "web_search_call"
|
||||
)
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0]["id"]
|
||||
== "websearch_123"
|
||||
)
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0]["status"]
|
||||
== "completed"
|
||||
)
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_file_search_response() -> None:
|
||||
"""Test a response with file search output."""
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseFileSearchToolCall(
|
||||
id="filesearch_123",
|
||||
type="file_search_call",
|
||||
status="completed",
|
||||
queries=["python code", "langchain"],
|
||||
results=[
|
||||
Result(
|
||||
file_id="file_123",
|
||||
filename="example.py",
|
||||
score=0.95,
|
||||
text="def hello_world() -> None:\n print('Hello, world!')",
|
||||
attributes={"language": "python", "size": 42},
|
||||
)
|
||||
],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
assert "tool_outputs" in result.generations[0].message.additional_kwargs
|
||||
assert len(result.generations[0].message.additional_kwargs["tool_outputs"]) == 1
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0]["type"]
|
||||
== "file_search_call"
|
||||
)
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0]["id"]
|
||||
== "filesearch_123"
|
||||
)
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0]["status"]
|
||||
== "completed"
|
||||
)
|
||||
assert result.generations[0].message.additional_kwargs["tool_outputs"][0][
|
||||
"queries"
|
||||
] == ["python code", "langchain"]
|
||||
assert (
|
||||
len(
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0][
|
||||
"results"
|
||||
]
|
||||
)
|
||||
== 1
|
||||
)
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0]["results"][
|
||||
0
|
||||
]["file_id"]
|
||||
== "file_123"
|
||||
)
|
||||
assert (
|
||||
result.generations[0].message.additional_kwargs["tool_outputs"][0]["results"][
|
||||
0
|
||||
]["score"]
|
||||
== 0.95
|
||||
)
|
||||
|
||||
|
||||
def test__construct_lc_result_from_response_api_mixed_search_responses() -> None:
|
||||
"""Test a response with both web search and file search outputs."""
|
||||
|
||||
response = Response(
|
||||
id="resp_123",
|
||||
created_at=1234567890,
|
||||
model="gpt-4o",
|
||||
object="response",
|
||||
parallel_tool_calls=True,
|
||||
tools=[],
|
||||
tool_choice="auto",
|
||||
output=[
|
||||
ResponseOutputMessage(
|
||||
type="message",
|
||||
id="msg_123",
|
||||
content=[
|
||||
ResponseOutputText(
|
||||
type="output_text", text="Here's what I found:", annotations=[]
|
||||
)
|
||||
],
|
||||
role="assistant",
|
||||
status="completed",
|
||||
),
|
||||
ResponseFunctionWebSearch(
|
||||
id="websearch_123", type="web_search_call", status="completed"
|
||||
),
|
||||
ResponseFileSearchToolCall(
|
||||
id="filesearch_123",
|
||||
type="file_search_call",
|
||||
status="completed",
|
||||
queries=["python code"],
|
||||
results=[
|
||||
Result(
|
||||
file_id="file_123",
|
||||
filename="example.py",
|
||||
score=0.95,
|
||||
text="def hello_world() -> None:\n print('Hello, world!')",
|
||||
)
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
result = _construct_lc_result_from_response_api(response)
|
||||
|
||||
# Check message content
|
||||
assert result.generations[0].message.content == [
|
||||
{"type": "text", "text": "Here's what I found:", "annotations": []}
|
||||
]
|
||||
|
||||
# Check tool outputs
|
||||
assert "tool_outputs" in result.generations[0].message.additional_kwargs
|
||||
assert len(result.generations[0].message.additional_kwargs["tool_outputs"]) == 2
|
||||
|
||||
# Check web search output
|
||||
web_search = next(
|
||||
output
|
||||
for output in result.generations[0].message.additional_kwargs["tool_outputs"]
|
||||
if output["type"] == "web_search_call"
|
||||
)
|
||||
assert web_search["id"] == "websearch_123"
|
||||
assert web_search["status"] == "completed"
|
||||
|
||||
# Check file search output
|
||||
file_search = next(
|
||||
output
|
||||
for output in result.generations[0].message.additional_kwargs["tool_outputs"]
|
||||
if output["type"] == "file_search_call"
|
||||
)
|
||||
assert file_search["id"] == "filesearch_123"
|
||||
assert file_search["queries"] == ["python code"]
|
||||
assert file_search["results"][0]["filename"] == "example.py"
|
||||
|
25
uv.lock
25
uv.lock
@ -1,4 +1,5 @@
|
||||
version = 1
|
||||
revision = 1
|
||||
requires-python = ">=3.9, <4.0"
|
||||
resolution-markers = [
|
||||
"python_full_version >= '3.13' and platform_python_implementation == 'PyPy'",
|
||||
@ -2152,7 +2153,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain"
|
||||
version = "0.3.19"
|
||||
version = "0.3.20"
|
||||
source = { editable = "libs/langchain" }
|
||||
dependencies = [
|
||||
{ name = "async-timeout", marker = "python_full_version < '3.11'" },
|
||||
@ -2191,6 +2192,7 @@ requires-dist = [
|
||||
{ name = "requests", specifier = ">=2,<3" },
|
||||
{ name = "sqlalchemy", specifier = ">=1.4,<3" },
|
||||
]
|
||||
provides-extras = ["community", "anthropic", "openai", "cohere", "google-vertexai", "google-genai", "fireworks", "ollama", "together", "mistralai", "huggingface", "groq", "aws", "deepseek", "xai"]
|
||||
|
||||
[package.metadata.requires-dev]
|
||||
codespell = [{ name = "codespell", specifier = ">=2.2.0,<3.0.0" }]
|
||||
@ -2259,7 +2261,7 @@ typing = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-anthropic"
|
||||
version = "0.3.8"
|
||||
version = "0.3.9"
|
||||
source = { editable = "libs/partners/anthropic" }
|
||||
dependencies = [
|
||||
{ name = "anthropic" },
|
||||
@ -2360,7 +2362,7 @@ typing = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-community"
|
||||
version = "0.3.18"
|
||||
version = "0.3.19"
|
||||
source = { editable = "libs/community" }
|
||||
dependencies = [
|
||||
{ name = "aiohttp" },
|
||||
@ -2385,8 +2387,7 @@ requires-dist = [
|
||||
{ name = "langchain", editable = "libs/langchain" },
|
||||
{ name = "langchain-core", editable = "libs/core" },
|
||||
{ name = "langsmith", specifier = ">=0.1.125,<0.4" },
|
||||
{ name = "numpy", marker = "python_full_version < '3.12'", specifier = ">=1.26.4,<2" },
|
||||
{ name = "numpy", marker = "python_full_version >= '3.12'", specifier = ">=1.26.2,<3" },
|
||||
{ name = "numpy", specifier = ">=1.26.2,<3" },
|
||||
{ name = "pydantic-settings", specifier = ">=2.4.0,<3.0.0" },
|
||||
{ name = "pyyaml", specifier = ">=5.3" },
|
||||
{ name = "requests", specifier = ">=2,<3" },
|
||||
@ -2450,7 +2451,7 @@ typing = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-core"
|
||||
version = "0.3.40"
|
||||
version = "0.3.43"
|
||||
source = { editable = "libs/core" }
|
||||
dependencies = [
|
||||
{ name = "jsonpatch" },
|
||||
@ -2573,7 +2574,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-groq"
|
||||
version = "0.2.4"
|
||||
version = "0.2.5"
|
||||
source = { editable = "libs/partners/groq" }
|
||||
dependencies = [
|
||||
{ name = "groq" },
|
||||
@ -2732,7 +2733,7 @@ typing = []
|
||||
|
||||
[[package]]
|
||||
name = "langchain-openai"
|
||||
version = "0.3.7"
|
||||
version = "0.3.8"
|
||||
source = { editable = "libs/partners/openai" }
|
||||
dependencies = [
|
||||
{ name = "langchain-core" },
|
||||
@ -2743,7 +2744,7 @@ dependencies = [
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "langchain-core", editable = "libs/core" },
|
||||
{ name = "openai", specifier = ">=1.58.1,<2.0.0" },
|
||||
{ name = "openai", specifier = ">=1.66.0,<2.0.0" },
|
||||
{ name = "tiktoken", specifier = ">=0.7,<1" },
|
||||
]
|
||||
|
||||
@ -3630,7 +3631,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "openai"
|
||||
version = "1.61.1"
|
||||
version = "1.66.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "anyio" },
|
||||
@ -3642,9 +3643,9 @@ dependencies = [
|
||||
{ name = "tqdm" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/d9/cf/61e71ce64cf0a38f029da0f9a5f10c9fa0e69a7a977b537126dac50adfea/openai-1.61.1.tar.gz", hash = "sha256:ce1851507218209961f89f3520e06726c0aa7d0512386f0f977e3ac3e4f2472e", size = 350784 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/d8/e1/b3e1fda1aa32d4f40d4de744e91de4de65c854c3e53c63342e4b5f9c5995/openai-1.66.2.tar.gz", hash = "sha256:9b3a843c25f81ee09b6469d483d9fba779d5c6ea41861180772f043481b0598d", size = 397041 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/b6/2e2a011b2dc27a6711376808b4cd8c922c476ea0f1420b39892117fa8563/openai-1.61.1-py3-none-any.whl", hash = "sha256:72b0826240ce26026ac2cd17951691f046e5be82ad122d20a8e1b30ca18bd11e", size = 463126 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2c/6f/3315b3583ffe3e31c55b446cb22d2a7c235e65ca191674fffae62deb3c11/openai-1.66.2-py3-none-any.whl", hash = "sha256:75194057ee6bb8b732526387b6041327a05656d976fc21c064e21c8ac6b07999", size = 567268 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
Loading…
Reference in New Issue
Block a user