mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-25 21:37:20 +00:00
VoyageEmbeddings (#12608)
- **Description:** Integrate VoyageEmbeddings into LangChain, with tests and docs - **Issue:** N/A - **Dependencies:** N/A - **Tag maintainer:** N/A - **Twitter handle:** @Voyage_AI_ --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -64,6 +64,7 @@ from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddi
|
||||
from langchain.embeddings.spacy_embeddings import SpacyEmbeddings
|
||||
from langchain.embeddings.tensorflow_hub import TensorflowHubEmbeddings
|
||||
from langchain.embeddings.vertexai import VertexAIEmbeddings
|
||||
from langchain.embeddings.voyageai import VoyageEmbeddings
|
||||
from langchain.embeddings.xinference import XinferenceEmbeddings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -115,6 +116,7 @@ __all__ = [
|
||||
"OllamaEmbeddings",
|
||||
"QianfanEmbeddingsEndpoint",
|
||||
"JohnSnowLabsEmbeddings",
|
||||
"VoyageEmbeddings",
|
||||
]
|
||||
|
||||
|
||||
|
158
libs/langchain/langchain/embeddings/voyageai.py
Normal file
158
libs/langchain/langchain/embeddings/voyageai.py
Normal file
@@ -0,0 +1,158 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
import requests
|
||||
from tenacity import (
|
||||
before_sleep_log,
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
)
|
||||
|
||||
from langchain.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
|
||||
from langchain.schema.embeddings import Embeddings
|
||||
from langchain.utils import convert_to_secret_str, get_from_dict_or_env
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _create_retry_decorator(embeddings: VoyageEmbeddings) -> Callable[[Any], Any]:
|
||||
min_seconds = 4
|
||||
max_seconds = 10
|
||||
# Wait 2^x * 1 second between each retry starting with
|
||||
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
||||
return retry(
|
||||
reraise=True,
|
||||
stop=stop_after_attempt(embeddings.max_retries),
|
||||
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
||||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||
)
|
||||
|
||||
|
||||
def _check_response(response: dict) -> dict:
|
||||
if "data" not in response:
|
||||
raise RuntimeError(f"Voyage API Error. Message: {json.dumps(response)}")
|
||||
return response
|
||||
|
||||
|
||||
def embed_with_retry(embeddings: VoyageEmbeddings, **kwargs: Any) -> Any:
|
||||
"""Use tenacity to retry the embedding call."""
|
||||
retry_decorator = _create_retry_decorator(embeddings)
|
||||
|
||||
@retry_decorator
|
||||
def _embed_with_retry(**kwargs: Any) -> Any:
|
||||
response = requests.post(**kwargs)
|
||||
return _check_response(response.json())
|
||||
|
||||
return _embed_with_retry(**kwargs)
|
||||
|
||||
|
||||
class VoyageEmbeddings(BaseModel, Embeddings):
|
||||
"""Voyage embedding models.
|
||||
|
||||
To use, you should have the environment variable ``VOYAGE_API_KEY`` set with
|
||||
your API key or pass it as a named parameter to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.embeddings import VoyageEmbeddings
|
||||
|
||||
voyage = VoyageEmbeddings(voyage_api_key="your-api-key")
|
||||
text = "This is a test query."
|
||||
query_result = voyage.embed_query(text)
|
||||
"""
|
||||
|
||||
model: str = "voyage-01"
|
||||
voyage_api_base: str = "https://api.voyageai.com/v1/embeddings"
|
||||
voyage_api_key: Optional[SecretStr] = None
|
||||
batch_size: int = 8
|
||||
"""Maximum number of texts to embed in each API request."""
|
||||
max_retries: int = 6
|
||||
"""Maximum number of retries to make when generating."""
|
||||
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
||||
"""Timeout in seconds for the API request."""
|
||||
show_progress_bar: bool = False
|
||||
"""Whether to show a progress bar when embedding. Must have tqdm installed if set
|
||||
to True."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["voyage_api_key"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "voyage_api_key", "VOYAGE_API_KEY")
|
||||
)
|
||||
return values
|
||||
|
||||
def _invocation_params(self, input: List[str]) -> Dict:
|
||||
api_key = cast(SecretStr, self.voyage_api_key).get_secret_value()
|
||||
params = {
|
||||
"url": self.voyage_api_base,
|
||||
"headers": {"Authorization": f"Bearer {api_key}"},
|
||||
"json": {"model": self.model, "input": input},
|
||||
"timeout": self.request_timeout,
|
||||
}
|
||||
return params
|
||||
|
||||
def _get_embeddings(self, texts: List[str], batch_size: int) -> List[List[float]]:
|
||||
embeddings: List[List[float]] = []
|
||||
|
||||
if self.show_progress_bar:
|
||||
try:
|
||||
from tqdm.auto import tqdm
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Must have tqdm installed if `show_progress_bar` is set to True. "
|
||||
"Please install with `pip install tqdm`."
|
||||
) from e
|
||||
|
||||
_iter = tqdm(range(0, len(texts), batch_size))
|
||||
else:
|
||||
_iter = range(0, len(texts), batch_size)
|
||||
|
||||
for i in _iter:
|
||||
response = embed_with_retry(
|
||||
self, **self._invocation_params(input=texts[i : i + batch_size])
|
||||
)
|
||||
embeddings.extend(r["embedding"] for r in response["data"])
|
||||
|
||||
return embeddings
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to Voyage Embedding endpoint for embedding search docs.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
return self._get_embeddings(texts, batch_size=self.batch_size)
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to Voyage Embedding endpoint for embedding query text.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embedding for the text.
|
||||
"""
|
||||
return self.embed_documents([text])[0]
|
@@ -0,0 +1,33 @@
|
||||
"""Test voyage embeddings."""
|
||||
from langchain.embeddings.voyageai import VoyageEmbeddings
|
||||
|
||||
# Please set VOYAGE_API_KEY in the environment variables
|
||||
MODEL = "voyage-01"
|
||||
|
||||
|
||||
def test_voyagi_embedding_documents() -> None:
|
||||
"""Test voyage embeddings."""
|
||||
documents = ["foo bar"]
|
||||
embedding = VoyageEmbeddings(model=MODEL)
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 1024
|
||||
|
||||
|
||||
def test_voyage_embedding_documents_multiple() -> None:
|
||||
"""Test voyage embeddings."""
|
||||
documents = ["foo bar", "bar foo", "foo"]
|
||||
embedding = VoyageEmbeddings(model=MODEL, batch_size=2)
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 3
|
||||
assert len(output[0]) == 1024
|
||||
assert len(output[1]) == 1024
|
||||
assert len(output[2]) == 1024
|
||||
|
||||
|
||||
def test_voyage_embedding_query() -> None:
|
||||
"""Test voyage embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = VoyageEmbeddings(model=MODEL)
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 1024
|
Reference in New Issue
Block a user