mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-23 07:09:31 +00:00
langchain[patch], core[patch], openai[patch], fireworks[minor]: ChatFireworks.with_structured_output (#18078)
<img width="1192" alt="Screenshot 2024-02-24 at 3 39 39 PM" src="https://github.com/langchain-ai/langchain/assets/22008038/1cf74774-a23f-4b06-9b9b-85dfa2f75b63">
This commit is contained in:
parent
3589a135ef
commit
1e8ab83d7b
123
libs/core/langchain_core/output_parsers/openai_tools.py
Normal file
123
libs/core/langchain_core/output_parsers/openai_tools.py
Normal file
@ -0,0 +1,123 @@
|
||||
import copy
|
||||
import json
|
||||
from json import JSONDecodeError
|
||||
from typing import Any, List, Type
|
||||
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.output_parsers import BaseGenerationOutputParser
|
||||
from langchain_core.output_parsers.json import parse_partial_json
|
||||
from langchain_core.outputs import ChatGeneration, Generation
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
|
||||
class JsonOutputToolsParser(BaseGenerationOutputParser[Any]):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
strict: bool = False
|
||||
"""Whether to allow non-JSON-compliant strings.
|
||||
|
||||
See: https://docs.python.org/3/library/json.html#encoders-and-decoders
|
||||
|
||||
Useful when the parsed output may include unicode characters or new lines.
|
||||
"""
|
||||
return_id: bool = False
|
||||
"""Whether to return the tool call id."""
|
||||
first_tool_only: bool = False
|
||||
"""Whether to return only the first tool call.
|
||||
|
||||
If False, the result will be a list of tool calls, or an empty list
|
||||
if no tool calls are found.
|
||||
|
||||
If true, and multiple tool calls are found, only the first one will be returned,
|
||||
and the other tool calls will be ignored.
|
||||
If no tool calls are found, None will be returned.
|
||||
"""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
generation = result[0]
|
||||
if not isinstance(generation, ChatGeneration):
|
||||
raise OutputParserException(
|
||||
"This output parser can only be used with a chat generation."
|
||||
)
|
||||
message = generation.message
|
||||
try:
|
||||
tool_calls = copy.deepcopy(message.additional_kwargs["tool_calls"])
|
||||
except KeyError:
|
||||
return []
|
||||
|
||||
final_tools = []
|
||||
exceptions = []
|
||||
for tool_call in tool_calls:
|
||||
if "function" not in tool_call:
|
||||
continue
|
||||
try:
|
||||
if partial:
|
||||
function_args = parse_partial_json(
|
||||
tool_call["function"]["arguments"], strict=self.strict
|
||||
)
|
||||
else:
|
||||
function_args = json.loads(
|
||||
tool_call["function"]["arguments"], strict=self.strict
|
||||
)
|
||||
except JSONDecodeError as e:
|
||||
exceptions.append(
|
||||
f"Function {tool_call['function']['name']} arguments:\n\n"
|
||||
f"{tool_call['function']['arguments']}\n\nare not valid JSON. "
|
||||
f"Received JSONDecodeError {e}"
|
||||
)
|
||||
continue
|
||||
parsed = {
|
||||
"type": tool_call["function"]["name"],
|
||||
"args": function_args,
|
||||
}
|
||||
if self.return_id:
|
||||
parsed["id"] = tool_call["id"]
|
||||
final_tools.append(parsed)
|
||||
if exceptions:
|
||||
raise OutputParserException("\n\n".join(exceptions))
|
||||
if self.first_tool_only:
|
||||
return final_tools[0] if final_tools else None
|
||||
return final_tools
|
||||
|
||||
|
||||
class JsonOutputKeyToolsParser(JsonOutputToolsParser):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
key_name: str
|
||||
"""The type of tools to return."""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
parsed_result = super().parse_result(result, partial=partial)
|
||||
if self.first_tool_only:
|
||||
single_result = (
|
||||
parsed_result
|
||||
if parsed_result and parsed_result["type"] == self.key_name
|
||||
else None
|
||||
)
|
||||
if self.return_id:
|
||||
return single_result
|
||||
elif single_result:
|
||||
return single_result["args"]
|
||||
else:
|
||||
return None
|
||||
parsed_result = [res for res in parsed_result if res["type"] == self.key_name]
|
||||
if not self.return_id:
|
||||
parsed_result = [res["args"] for res in parsed_result]
|
||||
return parsed_result
|
||||
|
||||
|
||||
class PydanticToolsParser(JsonOutputToolsParser):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
tools: List[Type[BaseModel]]
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
parsed_result = super().parse_result(result, partial=partial)
|
||||
name_dict = {tool.__name__: tool for tool in self.tools}
|
||||
if self.first_tool_only:
|
||||
return (
|
||||
name_dict[parsed_result["type"]](**parsed_result["args"])
|
||||
if parsed_result
|
||||
else None
|
||||
)
|
||||
return [name_dict[res["type"]](**res["args"]) for res in parsed_result]
|
@ -1,135 +1,7 @@
|
||||
import copy
|
||||
import json
|
||||
from json import JSONDecodeError
|
||||
from typing import Any, List, Type
|
||||
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.output_parsers import BaseGenerationOutputParser
|
||||
from langchain_core.output_parsers.json import parse_partial_json
|
||||
from langchain_core.outputs import ChatGeneration, Generation
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
|
||||
class JsonOutputToolsParser(BaseGenerationOutputParser[Any]):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
strict: bool = False
|
||||
"""Whether to allow non-JSON-compliant strings.
|
||||
|
||||
See: https://docs.python.org/3/library/json.html#encoders-and-decoders
|
||||
|
||||
Useful when the parsed output may include unicode characters or new lines.
|
||||
"""
|
||||
return_id: bool = False
|
||||
"""Whether to return the tool call id."""
|
||||
first_tool_only: bool = False
|
||||
"""Whether to return only the first tool call.
|
||||
|
||||
If False, the result will be a list of tool calls, or an empty list
|
||||
if no tool calls are found.
|
||||
|
||||
If true, and multiple tool calls are found, only the first one will be returned,
|
||||
and the other tool calls will be ignored.
|
||||
If no tool calls are found, None will be returned.
|
||||
"""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
generation = result[0]
|
||||
if not isinstance(generation, ChatGeneration):
|
||||
raise OutputParserException(
|
||||
"This output parser can only be used with a chat generation."
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
JsonOutputToolsParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
message = generation.message
|
||||
try:
|
||||
tool_calls = copy.deepcopy(message.additional_kwargs["tool_calls"])
|
||||
except KeyError:
|
||||
return []
|
||||
|
||||
final_tools = []
|
||||
exceptions = []
|
||||
for tool_call in tool_calls:
|
||||
if "function" not in tool_call:
|
||||
continue
|
||||
try:
|
||||
if partial:
|
||||
function_args = parse_partial_json(
|
||||
tool_call["function"]["arguments"], strict=self.strict
|
||||
)
|
||||
else:
|
||||
function_args = json.loads(
|
||||
tool_call["function"]["arguments"], strict=self.strict
|
||||
)
|
||||
except JSONDecodeError as e:
|
||||
exceptions.append(
|
||||
f"Function {tool_call['function']['name']} arguments:\n\n"
|
||||
f"{tool_call['function']['arguments']}\n\nare not valid JSON. "
|
||||
f"Received JSONDecodeError {e}"
|
||||
)
|
||||
continue
|
||||
parsed = {
|
||||
"type": tool_call["function"]["name"],
|
||||
"args": function_args,
|
||||
}
|
||||
if self.return_id:
|
||||
parsed["id"] = tool_call["id"]
|
||||
final_tools.append(parsed)
|
||||
if exceptions:
|
||||
raise OutputParserException("\n\n".join(exceptions))
|
||||
if self.first_tool_only:
|
||||
return final_tools[0] if final_tools else None
|
||||
return final_tools
|
||||
|
||||
|
||||
class JsonOutputKeyToolsParser(JsonOutputToolsParser):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
key_name: str
|
||||
"""The type of tools to return."""
|
||||
|
||||
def __init__(self, key_name: str, **kwargs: Any) -> None:
|
||||
"""Allow init with positional args."""
|
||||
# Backwards compatibility for old argument name.
|
||||
if "return_single" in kwargs:
|
||||
if not kwargs.get("first_tool_only"):
|
||||
kwargs["first_tool_only"] = kwargs.pop("return_single")
|
||||
else:
|
||||
raise ValueError(
|
||||
"Cannot use both 'return_single' and 'first_tool_only' arguments."
|
||||
)
|
||||
super().__init__(key_name=key_name, **kwargs)
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
parsed_result = super().parse_result(result, partial=partial)
|
||||
if self.first_tool_only:
|
||||
single_result = (
|
||||
parsed_result
|
||||
if parsed_result and parsed_result["type"] == self.key_name
|
||||
else None
|
||||
)
|
||||
if self.return_id:
|
||||
return single_result
|
||||
elif single_result:
|
||||
return single_result["args"]
|
||||
else:
|
||||
return None
|
||||
parsed_result = [res for res in parsed_result if res["type"] == self.key_name]
|
||||
if not self.return_id:
|
||||
parsed_result = [res["args"] for res in parsed_result]
|
||||
return parsed_result
|
||||
|
||||
|
||||
class PydanticToolsParser(JsonOutputToolsParser):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
tools: List[Type[BaseModel]]
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
parsed_result = super().parse_result(result, partial=partial)
|
||||
name_dict = {tool.__name__: tool for tool in self.tools}
|
||||
if self.first_tool_only:
|
||||
return (
|
||||
name_dict[parsed_result["type"]](**parsed_result["args"])
|
||||
if parsed_result
|
||||
else None
|
||||
)
|
||||
return [name_dict[res["type"]](**res["args"]) for res in parsed_result]
|
||||
__all__ = ["PydanticToolsParser", "JsonOutputToolsParser", "JsonOutputKeyToolsParser"]
|
||||
|
@ -4,6 +4,7 @@ from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
from operator import itemgetter
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
@ -23,6 +24,7 @@ from typing import (
|
||||
)
|
||||
|
||||
from fireworks.client import AsyncFireworks, Fireworks # type: ignore
|
||||
from langchain_core._api import beta
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
@ -49,9 +51,15 @@ from langchain_core.messages import (
|
||||
ToolMessage,
|
||||
ToolMessageChunk,
|
||||
)
|
||||
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.runnables import Runnable
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils import (
|
||||
convert_to_secret_str,
|
||||
@ -189,7 +197,7 @@ class _FunctionCall(TypedDict):
|
||||
name: str
|
||||
|
||||
|
||||
# This is basically a copy and replace for ChatOpenAI, except
|
||||
# This is basically a copy and replace for ChatFireworks, except
|
||||
# - I needed to gut out tiktoken and some of the token estimation logic
|
||||
# (not sure how important it is)
|
||||
# - Environment variable is different
|
||||
@ -573,7 +581,7 @@ class ChatFireworks(BaseChatModel):
|
||||
self,
|
||||
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
||||
*,
|
||||
tool_choice: Optional[Union[dict, str, Literal["auto", "none"]]] = None,
|
||||
tool_choice: Optional[Union[dict, str, Literal["auto", "none"], bool]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
"""Bind tool-like objects to this chat model.
|
||||
@ -595,7 +603,7 @@ class ChatFireworks(BaseChatModel):
|
||||
"""
|
||||
|
||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||
if tool_choice is not None:
|
||||
if tool_choice is not None and tool_choice:
|
||||
if isinstance(tool_choice, str) and (tool_choice not in ("auto", "none")):
|
||||
tool_choice = {"type": "function", "function": {"name": tool_choice}}
|
||||
if isinstance(tool_choice, dict) and (len(formatted_tools) != 1):
|
||||
@ -611,5 +619,223 @@ class ChatFireworks(BaseChatModel):
|
||||
f"Tool choice {tool_choice} was specified, but the only "
|
||||
f"provided tool was {formatted_tools[0]['function']['name']}."
|
||||
)
|
||||
if isinstance(tool_choice, bool):
|
||||
if len(tools) > 1:
|
||||
raise ValueError(
|
||||
"tool_choice can only be True when there is one tool. Received "
|
||||
f"{len(tools)} tools."
|
||||
)
|
||||
tool_choice = formatted_tools[0]
|
||||
kwargs["tool_choice"] = tool_choice
|
||||
return super().bind(tools=formatted_tools, **kwargs)
|
||||
|
||||
@beta()
|
||||
def with_structured_output(
|
||||
self,
|
||||
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
||||
*,
|
||||
method: Literal["function_calling", "json_mode"] = "function_calling",
|
||||
include_raw: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
||||
"""Model wrapper that returns outputs formatted to match the given schema.
|
||||
|
||||
Args:
|
||||
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
||||
then the model output will be an object of that class. If a dict then
|
||||
the model output will be a dict. With a Pydantic class the returned
|
||||
attributes will be validated, whereas with a dict they will not be. If
|
||||
`method` is "function_calling" and `schema` is a dict, then the dict
|
||||
must match the Fireworks function-calling spec.
|
||||
method: The method for steering model generation, either "function_calling"
|
||||
or "json_mode". If "function_calling" then the schema will be converted
|
||||
to a Fireworks function and the returned model will make use of the
|
||||
function-calling API. If "json_mode" then Fireworks's JSON mode will be
|
||||
used. Note that if using "json_mode" then you must include instructions
|
||||
for formatting the output into the desired schema into the model call.
|
||||
include_raw: If False then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If True
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
response will be returned. If an error occurs during output parsing it
|
||||
will be caught and returned as well. The final output is always a dict
|
||||
with keys "raw", "parsed", and "parsing_error".
|
||||
|
||||
Returns:
|
||||
A Runnable that takes any ChatModel input and returns as output:
|
||||
|
||||
If include_raw is True then a dict with keys:
|
||||
raw: BaseMessage
|
||||
parsed: Optional[_DictOrPydantic]
|
||||
parsing_error: Optional[BaseException]
|
||||
|
||||
If include_raw is False then just _DictOrPydantic is returned,
|
||||
where _DictOrPydantic depends on the schema:
|
||||
|
||||
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
||||
class.
|
||||
|
||||
If schema is a dict then _DictOrPydantic is a dict.
|
||||
|
||||
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_fireworks import ChatFireworks
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
|
||||
# -> AnswerWithJustification(
|
||||
# answer='They weigh the same',
|
||||
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
||||
# )
|
||||
|
||||
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_fireworks import ChatFireworks
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
||||
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_fireworks import ChatFireworks
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
||||
structured_llm = llm.with_structured_output(dict_schema)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> {
|
||||
# 'answer': 'They weigh the same',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
||||
# }
|
||||
|
||||
Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True):
|
||||
.. code-block::
|
||||
|
||||
from langchain_fireworks import ChatFireworks
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
||||
structured_llm = llm.with_structured_output(
|
||||
AnswerWithJustification,
|
||||
method="json_mode",
|
||||
include_raw=True
|
||||
)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
||||
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True):
|
||||
.. code-block::
|
||||
|
||||
from langchain_fireworks import ChatFireworks
|
||||
|
||||
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
||||
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
||||
# 'parsed': {
|
||||
# 'answer': 'They are both the same weight.',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
|
||||
# },
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
|
||||
""" # noqa: E501
|
||||
if kwargs:
|
||||
raise ValueError(f"Received unsupported arguments {kwargs}")
|
||||
is_pydantic_schema = _is_pydantic_class(schema)
|
||||
if method == "function_calling":
|
||||
if schema is None:
|
||||
raise ValueError(
|
||||
"schema must be specified when method is 'function_calling'. "
|
||||
"Received None."
|
||||
)
|
||||
llm = self.bind_tools([schema], tool_choice=True)
|
||||
if is_pydantic_schema:
|
||||
output_parser: OutputParserLike = PydanticToolsParser(
|
||||
tools=[schema], first_tool_only=True
|
||||
)
|
||||
else:
|
||||
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
||||
output_parser = JsonOutputKeyToolsParser(
|
||||
key_name=key_name, first_tool_only=True
|
||||
)
|
||||
elif method == "json_mode":
|
||||
llm = self.bind(response_format={"type": "json_object"})
|
||||
output_parser = (
|
||||
PydanticOutputParser(pydantic_object=schema)
|
||||
if is_pydantic_schema
|
||||
else JsonOutputParser()
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
||||
f"'json_format'. Received: '{method}'"
|
||||
)
|
||||
|
||||
if include_raw:
|
||||
parser_assign = RunnablePassthrough.assign(
|
||||
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||
)
|
||||
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
||||
parser_with_fallback = parser_assign.with_fallbacks(
|
||||
[parser_none], exception_key="parsing_error"
|
||||
)
|
||||
return RunnableMap(raw=llm) | parser_with_fallback
|
||||
else:
|
||||
return llm | output_parser
|
||||
|
||||
|
||||
def _is_pydantic_class(obj: Any) -> bool:
|
||||
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
||||
|
@ -60,6 +60,10 @@ from langchain_core.output_parsers import (
|
||||
PydanticOutputParser,
|
||||
)
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||
@ -75,11 +79,6 @@ from langchain_core.utils.function_calling import (
|
||||
)
|
||||
from langchain_core.utils.utils import build_extra_kwargs
|
||||
|
||||
from langchain_openai.output_parsers import (
|
||||
JsonOutputKeyToolsParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
@ -1,11 +1,7 @@
|
||||
from langchain_openai.output_parsers.tools import (
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
JsonOutputToolsParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"JsonOutputToolsParser",
|
||||
"JsonOutputKeyToolsParser",
|
||||
"PydanticToolsParser",
|
||||
]
|
||||
__all__ = ["JsonOutputKeyToolsParser", "JsonOutputToolsParser", "PydanticToolsParser"]
|
||||
|
@ -1,123 +1,7 @@
|
||||
import copy
|
||||
import json
|
||||
from json import JSONDecodeError
|
||||
from typing import Any, List, Type
|
||||
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.output_parsers import BaseGenerationOutputParser
|
||||
from langchain_core.output_parsers.json import parse_partial_json
|
||||
from langchain_core.outputs import ChatGeneration, Generation
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
|
||||
class JsonOutputToolsParser(BaseGenerationOutputParser[Any]):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
strict: bool = False
|
||||
"""Whether to allow non-JSON-compliant strings.
|
||||
|
||||
See: https://docs.python.org/3/library/json.html#encoders-and-decoders
|
||||
|
||||
Useful when the parsed output may include unicode characters or new lines.
|
||||
"""
|
||||
return_id: bool = False
|
||||
"""Whether to return the tool call id."""
|
||||
first_tool_only: bool = False
|
||||
"""Whether to return only the first tool call.
|
||||
|
||||
If False, the result will be a list of tool calls, or an empty list
|
||||
if no tool calls are found.
|
||||
|
||||
If true, and multiple tool calls are found, only the first one will be returned,
|
||||
and the other tool calls will be ignored.
|
||||
If no tool calls are found, None will be returned.
|
||||
"""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
generation = result[0]
|
||||
if not isinstance(generation, ChatGeneration):
|
||||
raise OutputParserException(
|
||||
"This output parser can only be used with a chat generation."
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
JsonOutputToolsParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
message = generation.message
|
||||
try:
|
||||
tool_calls = copy.deepcopy(message.additional_kwargs["tool_calls"])
|
||||
except KeyError:
|
||||
return []
|
||||
|
||||
final_tools = []
|
||||
exceptions = []
|
||||
for tool_call in tool_calls:
|
||||
if "function" not in tool_call:
|
||||
continue
|
||||
try:
|
||||
if partial:
|
||||
function_args = parse_partial_json(
|
||||
tool_call["function"]["arguments"], strict=self.strict
|
||||
)
|
||||
else:
|
||||
function_args = json.loads(
|
||||
tool_call["function"]["arguments"], strict=self.strict
|
||||
)
|
||||
except JSONDecodeError as e:
|
||||
exceptions.append(
|
||||
f"Function {tool_call['function']['name']} arguments:\n\n"
|
||||
f"{tool_call['function']['arguments']}\n\nare not valid JSON. "
|
||||
f"Received JSONDecodeError {e}"
|
||||
)
|
||||
continue
|
||||
parsed = {
|
||||
"type": tool_call["function"]["name"],
|
||||
"args": function_args,
|
||||
}
|
||||
if self.return_id:
|
||||
parsed["id"] = tool_call["id"]
|
||||
final_tools.append(parsed)
|
||||
if exceptions:
|
||||
raise OutputParserException("\n\n".join(exceptions))
|
||||
if self.first_tool_only:
|
||||
return final_tools[0] if final_tools else None
|
||||
return final_tools
|
||||
|
||||
|
||||
class JsonOutputKeyToolsParser(JsonOutputToolsParser):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
key_name: str
|
||||
"""The type of tools to return."""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
parsed_result = super().parse_result(result, partial=partial)
|
||||
if self.first_tool_only:
|
||||
single_result = (
|
||||
parsed_result
|
||||
if parsed_result and parsed_result["type"] == self.key_name
|
||||
else None
|
||||
)
|
||||
if self.return_id:
|
||||
return single_result
|
||||
elif single_result:
|
||||
return single_result["args"]
|
||||
else:
|
||||
return None
|
||||
parsed_result = [res for res in parsed_result if res["type"] == self.key_name]
|
||||
if not self.return_id:
|
||||
parsed_result = [res["args"] for res in parsed_result]
|
||||
return parsed_result
|
||||
|
||||
|
||||
class PydanticToolsParser(JsonOutputToolsParser):
|
||||
"""Parse tools from OpenAI response."""
|
||||
|
||||
tools: List[Type[BaseModel]]
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
parsed_result = super().parse_result(result, partial=partial)
|
||||
name_dict = {tool.__name__: tool for tool in self.tools}
|
||||
if self.first_tool_only:
|
||||
return (
|
||||
name_dict[parsed_result["type"]](**parsed_result["args"])
|
||||
if parsed_result
|
||||
else None
|
||||
)
|
||||
return [name_dict[res["type"]](**res["args"]) for res in parsed_result]
|
||||
__all__ = ["PydanticToolsParser", "JsonOutputToolsParser", "JsonOutputKeyToolsParser"]
|
||||
|
Loading…
Reference in New Issue
Block a user