Harrison/weaviate fixes (#2872)

Co-authored-by: cs0lar <cristiano.solarino@gmail.com>
Co-authored-by: cs0lar <cristiano.solarino@brightminded.com>
This commit is contained in:
Harrison Chase
2023-04-13 22:37:34 -07:00
committed by GitHub
parent 07d7096de6
commit 1e9378d0a8
5 changed files with 178 additions and 12 deletions

View File

@@ -0,0 +1,22 @@
version: '3.4'
services:
weaviate:
command:
- --host
- 0.0.0.0
- --port
- '8080'
- --scheme
- http
image: semitechnologies/weaviate:1.18.2
ports:
- 8080:8080
restart: on-failure:0
environment:
QUERY_DEFAULTS_LIMIT: 25
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'true'
PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
DEFAULT_VECTORIZER_MODULE: 'none'
ENABLE_MODULES: ''
CLUSTER_HOSTNAME: 'node1'

View File

@@ -0,0 +1,51 @@
"""Test Weaviate functionality."""
import logging
from typing import Generator, Union
import pytest
from weaviate import Client
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.weaviate import Weaviate
logging.basicConfig(level=logging.DEBUG)
"""
cd tests/integration_tests/vectorstores/docker-compose
docker compose -f weaviate.yml up
"""
class TestWeaviate:
@pytest.fixture(scope="class", autouse=True)
def weaviate_url(self) -> Union[str, Generator[str, None, None]]:
"""Return the weaviate url."""
url = "http://localhost:8080"
yield url
# Clear the test index
client = Client(url)
client.schema.delete_all()
def test_similarity_search_without_metadata(self, weaviate_url: str) -> None:
"""Test end to end construction and search without metadata."""
texts = ["foo", "bar", "baz"]
docsearch = Weaviate.from_texts(
texts,
OpenAIEmbeddings(),
weaviate_url=weaviate_url,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_similarity_search_with_metadata(self, weaviate_url: str) -> None:
"""Test end to end construction and search with metadata."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, OpenAIEmbeddings(), metadatas=metadatas, weaviate_url=weaviate_url
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]