mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-28 17:38:36 +00:00
community[minor]: Add SelfQueryRetriever support to PGVector (#16991)
- **Description:** Add SelfQueryRetriever support to PGVector - **Issue:** - - **Dependencies:** - - **Twitter handle:** - --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
cd945e3a5b
commit
1ed73f1992
@ -0,0 +1,308 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "13afcae7",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# PGVector\n",
|
||||||
|
"\n",
|
||||||
|
">[PGVector](https://github.com/pgvector/pgvector) is a vector similarity search for Postgres.\n",
|
||||||
|
"\n",
|
||||||
|
"In the notebook, we'll demo the `SelfQueryRetriever` wrapped around a `PGVector` vector store."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "68e75fb9",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Creating a PGVector vector store\n",
|
||||||
|
"First we'll want to create a PGVector vector store and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
|
||||||
|
"\n",
|
||||||
|
"**Note:** The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `` package."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "63a8af5b",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%pip install --upgrade --quiet lark pgvector psycopg2-binary"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "83811610-7df3-4ede-b268-68a6a83ba9e2",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "dd01b61b-7d32-4a55-85d6-b2d2d4f18840",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import getpass\n",
|
||||||
|
"import os\n",
|
||||||
|
"\n",
|
||||||
|
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "cb4a5787",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.schema import Document\n",
|
||||||
|
"from langchain_community.vectorstores import PGVector\n",
|
||||||
|
"from langchain_openai import OpenAIEmbeddings\n",
|
||||||
|
"\n",
|
||||||
|
"collection = \"Name of your collection\"\n",
|
||||||
|
"embeddings = OpenAIEmbeddings()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "bcbe04d9",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"docs = [\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n",
|
||||||
|
" metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n",
|
||||||
|
" metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n",
|
||||||
|
" metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n",
|
||||||
|
" metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Toys come alive and have a blast doing so\",\n",
|
||||||
|
" metadata={\"year\": 1995, \"genre\": \"animated\"},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n",
|
||||||
|
" metadata={\n",
|
||||||
|
" \"year\": 1979,\n",
|
||||||
|
" \"director\": \"Andrei Tarkovsky\",\n",
|
||||||
|
" \"genre\": \"science fiction\",\n",
|
||||||
|
" \"rating\": 9.9,\n",
|
||||||
|
" },\n",
|
||||||
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"vectorstore = PGVector.from_documents(\n",
|
||||||
|
" docs,\n",
|
||||||
|
" embeddings,\n",
|
||||||
|
" collection_name=collection,\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "5ecaab6d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Creating our self-querying retriever\n",
|
||||||
|
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"id": "86e34dbf",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||||||
|
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||||||
|
"from langchain_openai import OpenAI\n",
|
||||||
|
"\n",
|
||||||
|
"metadata_field_info = [\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"genre\",\n",
|
||||||
|
" description=\"The genre of the movie\",\n",
|
||||||
|
" type=\"string or list[string]\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"year\",\n",
|
||||||
|
" description=\"The year the movie was released\",\n",
|
||||||
|
" type=\"integer\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"director\",\n",
|
||||||
|
" description=\"The name of the movie director\",\n",
|
||||||
|
" type=\"string\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
|
||||||
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"document_content_description = \"Brief summary of a movie\"\n",
|
||||||
|
"llm = OpenAI(temperature=0)\n",
|
||||||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||||
|
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "ea9df8d4",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Testing it out\n",
|
||||||
|
"And now we can try actually using our retriever!"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "38a126e9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a relevant query\n",
|
||||||
|
"retriever.get_relevant_documents(\"What are some movies about dinosaurs\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "fc3f1e6e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a filter\n",
|
||||||
|
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "b19d4da0",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# This example specifies a query and a filter\n",
|
||||||
|
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "f900e40e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# This example specifies a composite filter\n",
|
||||||
|
"retriever.get_relevant_documents(\n",
|
||||||
|
" \"What's a highly rated (above 8.5) science fiction film?\"\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "12a51522",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# This example specifies a query and composite filter\n",
|
||||||
|
"retriever.get_relevant_documents(\n",
|
||||||
|
" \"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\"\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "39bd1de1-b9fe-4a98-89da-58d8a7a6ae51",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Filter k\n",
|
||||||
|
"\n",
|
||||||
|
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||||||
|
"\n",
|
||||||
|
"We can do this by passing `enable_limit=True` to the constructor."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"id": "bff36b88-b506-4877-9c63-e5a1a8d78e64",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||||
|
" llm,\n",
|
||||||
|
" vectorstore,\n",
|
||||||
|
" document_content_description,\n",
|
||||||
|
" metadata_field_info,\n",
|
||||||
|
" enable_limit=True,\n",
|
||||||
|
" verbose=True,\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "2758d229-4f97-499c-819f-888acaf8ee10",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a relevant query\n",
|
||||||
|
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.16"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -12,6 +12,7 @@ from langchain_community.vectorstores import (
|
|||||||
MongoDBAtlasVectorSearch,
|
MongoDBAtlasVectorSearch,
|
||||||
MyScale,
|
MyScale,
|
||||||
OpenSearchVectorSearch,
|
OpenSearchVectorSearch,
|
||||||
|
PGVector,
|
||||||
Pinecone,
|
Pinecone,
|
||||||
Qdrant,
|
Qdrant,
|
||||||
Redis,
|
Redis,
|
||||||
@ -43,6 +44,7 @@ from langchain.retrievers.self_query.milvus import MilvusTranslator
|
|||||||
from langchain.retrievers.self_query.mongodb_atlas import MongoDBAtlasTranslator
|
from langchain.retrievers.self_query.mongodb_atlas import MongoDBAtlasTranslator
|
||||||
from langchain.retrievers.self_query.myscale import MyScaleTranslator
|
from langchain.retrievers.self_query.myscale import MyScaleTranslator
|
||||||
from langchain.retrievers.self_query.opensearch import OpenSearchTranslator
|
from langchain.retrievers.self_query.opensearch import OpenSearchTranslator
|
||||||
|
from langchain.retrievers.self_query.pgvector import PGVectorTranslator
|
||||||
from langchain.retrievers.self_query.pinecone import PineconeTranslator
|
from langchain.retrievers.self_query.pinecone import PineconeTranslator
|
||||||
from langchain.retrievers.self_query.qdrant import QdrantTranslator
|
from langchain.retrievers.self_query.qdrant import QdrantTranslator
|
||||||
from langchain.retrievers.self_query.redis import RedisTranslator
|
from langchain.retrievers.self_query.redis import RedisTranslator
|
||||||
@ -58,6 +60,7 @@ def _get_builtin_translator(vectorstore: VectorStore) -> Visitor:
|
|||||||
"""Get the translator class corresponding to the vector store class."""
|
"""Get the translator class corresponding to the vector store class."""
|
||||||
BUILTIN_TRANSLATORS: Dict[Type[VectorStore], Type[Visitor]] = {
|
BUILTIN_TRANSLATORS: Dict[Type[VectorStore], Type[Visitor]] = {
|
||||||
AstraDB: AstraDBTranslator,
|
AstraDB: AstraDBTranslator,
|
||||||
|
PGVector: PGVectorTranslator,
|
||||||
Pinecone: PineconeTranslator,
|
Pinecone: PineconeTranslator,
|
||||||
Chroma: ChromaTranslator,
|
Chroma: ChromaTranslator,
|
||||||
DashVector: DashvectorTranslator,
|
DashVector: DashvectorTranslator,
|
||||||
|
52
libs/langchain/langchain/retrievers/self_query/pgvector.py
Normal file
52
libs/langchain/langchain/retrievers/self_query/pgvector.py
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
from typing import Dict, Tuple, Union
|
||||||
|
|
||||||
|
from langchain.chains.query_constructor.ir import (
|
||||||
|
Comparator,
|
||||||
|
Comparison,
|
||||||
|
Operation,
|
||||||
|
Operator,
|
||||||
|
StructuredQuery,
|
||||||
|
Visitor,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class PGVectorTranslator(Visitor):
|
||||||
|
"""Translate `PGVector` internal query language elements to valid filters."""
|
||||||
|
|
||||||
|
allowed_operators = [Operator.AND, Operator.OR]
|
||||||
|
"""Subset of allowed logical operators."""
|
||||||
|
allowed_comparators = [
|
||||||
|
Comparator.EQ,
|
||||||
|
Comparator.NE,
|
||||||
|
Comparator.GT,
|
||||||
|
Comparator.LT,
|
||||||
|
Comparator.IN,
|
||||||
|
Comparator.NIN,
|
||||||
|
Comparator.CONTAIN,
|
||||||
|
Comparator.LIKE,
|
||||||
|
]
|
||||||
|
"""Subset of allowed logical comparators."""
|
||||||
|
|
||||||
|
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
||||||
|
self._validate_func(func)
|
||||||
|
return f"{func.value}"
|
||||||
|
|
||||||
|
def visit_operation(self, operation: Operation) -> Dict:
|
||||||
|
args = [arg.accept(self) for arg in operation.arguments]
|
||||||
|
return {self._format_func(operation.operator): args}
|
||||||
|
|
||||||
|
def visit_comparison(self, comparison: Comparison) -> Dict:
|
||||||
|
return {
|
||||||
|
comparison.attribute: {
|
||||||
|
self._format_func(comparison.comparator): comparison.value
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def visit_structured_query(
|
||||||
|
self, structured_query: StructuredQuery
|
||||||
|
) -> Tuple[str, dict]:
|
||||||
|
if structured_query.filter is None:
|
||||||
|
kwargs = {}
|
||||||
|
else:
|
||||||
|
kwargs = {"filter": structured_query.filter.accept(self)}
|
||||||
|
return structured_query.query, kwargs
|
@ -0,0 +1,87 @@
|
|||||||
|
from typing import Dict, Tuple
|
||||||
|
|
||||||
|
import pytest as pytest
|
||||||
|
|
||||||
|
from langchain.chains.query_constructor.ir import (
|
||||||
|
Comparator,
|
||||||
|
Comparison,
|
||||||
|
Operation,
|
||||||
|
Operator,
|
||||||
|
StructuredQuery,
|
||||||
|
)
|
||||||
|
from langchain.retrievers.self_query.pgvector import PGVectorTranslator
|
||||||
|
|
||||||
|
DEFAULT_TRANSLATOR = PGVectorTranslator()
|
||||||
|
|
||||||
|
|
||||||
|
def test_visit_comparison() -> None:
|
||||||
|
comp = Comparison(comparator=Comparator.LT, attribute="foo", value=1)
|
||||||
|
expected = {"foo": {"lt": 1}}
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_comparison(comp)
|
||||||
|
assert expected == actual
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skip("Not implemented")
|
||||||
|
def test_visit_operation() -> None:
|
||||||
|
op = Operation(
|
||||||
|
operator=Operator.AND,
|
||||||
|
arguments=[
|
||||||
|
Comparison(comparator=Comparator.LT, attribute="foo", value=2),
|
||||||
|
Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"),
|
||||||
|
Comparison(comparator=Comparator.GT, attribute="abc", value=2.0),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
expected = {
|
||||||
|
"foo": {"lt": 2},
|
||||||
|
"bar": {"eq": "baz"},
|
||||||
|
"abc": {"gt": 2.0},
|
||||||
|
}
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_operation(op)
|
||||||
|
assert expected == actual
|
||||||
|
|
||||||
|
|
||||||
|
def test_visit_structured_query() -> None:
|
||||||
|
query = "What is the capital of France?"
|
||||||
|
structured_query = StructuredQuery(
|
||||||
|
query=query,
|
||||||
|
filter=None,
|
||||||
|
)
|
||||||
|
expected: Tuple[str, Dict] = (query, {})
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query)
|
||||||
|
assert expected == actual
|
||||||
|
|
||||||
|
comp = Comparison(comparator=Comparator.LT, attribute="foo", value=1)
|
||||||
|
structured_query = StructuredQuery(
|
||||||
|
query=query,
|
||||||
|
filter=comp,
|
||||||
|
)
|
||||||
|
expected = (query, {"filter": {"foo": {"lt": 1}}})
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query)
|
||||||
|
assert expected == actual
|
||||||
|
|
||||||
|
op = Operation(
|
||||||
|
operator=Operator.AND,
|
||||||
|
arguments=[
|
||||||
|
Comparison(comparator=Comparator.LT, attribute="foo", value=2),
|
||||||
|
Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"),
|
||||||
|
Comparison(comparator=Comparator.GT, attribute="abc", value=2.0),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
structured_query = StructuredQuery(
|
||||||
|
query=query,
|
||||||
|
filter=op,
|
||||||
|
)
|
||||||
|
expected = (
|
||||||
|
query,
|
||||||
|
{
|
||||||
|
"filter": {
|
||||||
|
"and": [
|
||||||
|
{"foo": {"lt": 2}},
|
||||||
|
{"bar": {"eq": "baz"}},
|
||||||
|
{"abc": {"gt": 2.0}},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
)
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query)
|
||||||
|
assert expected == actual
|
Loading…
Reference in New Issue
Block a user