mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-26 08:33:49 +00:00
docs[patch]: link and description cleanup (#14471)
Fixed inconsistencies; added links and descriptions --------- Co-authored-by: Erick Friis <erickfriis@gmail.com>
This commit is contained in:
parent
6fbfc375b9
commit
1ef13661b9
@ -5,13 +5,13 @@
|
||||
"id": "465cfbef-5bba-4b3b-b02d-fe2eba39db17",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Evaluating Structured Output: JSON Evaluators\n",
|
||||
"# JSON Evaluators\n",
|
||||
"\n",
|
||||
"Evaluating [extraction](https://python.langchain.com/docs/use_cases/extraction) and function calling applications often comes down to validation that the LLM's string output can be parsed correctly and how it compares to a reference object. The following JSON validators provide provide functionality to check your model's output in a consistent way.\n",
|
||||
"Evaluating [extraction](https://python.langchain.com/docs/use_cases/extraction) and function calling applications often comes down to validation that the LLM's string output can be parsed correctly and how it compares to a reference object. The following `JSON` validators provide functionality to check your model's output consistently.\n",
|
||||
"\n",
|
||||
"## JsonValidityEvaluator\n",
|
||||
"\n",
|
||||
"The `JsonValidityEvaluator` is designed to check the validity of a JSON string prediction.\n",
|
||||
"The `JsonValidityEvaluator` is designed to check the validity of a `JSON` string prediction.\n",
|
||||
"\n",
|
||||
"### Overview:\n",
|
||||
"- **Requires Input?**: No\n",
|
||||
@ -377,7 +377,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -8,9 +8,12 @@
|
||||
"# String Distance\n",
|
||||
"[](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/string_distance.ipynb)\n",
|
||||
"\n",
|
||||
"One of the simplest ways to compare an LLM or chain's string output against a reference label is by using string distance measurements such as Levenshtein or postfix distance. This can be used alongside approximate/fuzzy matching criteria for very basic unit testing.\n",
|
||||
">In information theory, linguistics, and computer science, the [Levenshtein distance (Wikipedia)](https://en.wikipedia.org/wiki/Levenshtein_distance) is a string metric for measuring the difference between two sequences. Informally, the Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other. It is named after the Soviet mathematician Vladimir Levenshtein, who considered this distance in 1965.\n",
|
||||
"\n",
|
||||
"This can be accessed using the `string_distance` evaluator, which uses distance metric's from the [rapidfuzz](https://github.com/maxbachmann/RapidFuzz) library.\n",
|
||||
"\n",
|
||||
"One of the simplest ways to compare an LLM or chain's string output against a reference label is by using string distance measurements such as `Levenshtein` or `postfix` distance. This can be used alongside approximate/fuzzy matching criteria for very basic unit testing.\n",
|
||||
"\n",
|
||||
"This can be accessed using the `string_distance` evaluator, which uses distance metrics from the [rapidfuzz](https://github.com/maxbachmann/RapidFuzz) library.\n",
|
||||
"\n",
|
||||
"**Note:** The returned scores are _distances_, meaning lower is typically \"better\".\n",
|
||||
"\n",
|
||||
@ -213,9 +216,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
}
|
||||
|
@ -115,6 +115,17 @@ See a [usage example](/docs/integrations/text_embedding/instruct_embeddings).
|
||||
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
||||
```
|
||||
|
||||
#### HuggingFaceBgeEmbeddings
|
||||
|
||||
>[BGE models on the HuggingFace](https://huggingface.co/BAAI/bge-large-en) are [the best open-source embedding models](https://huggingface.co/spaces/mteb/leaderboard).
|
||||
>BGE model is created by the [Beijing Academy of Artificial Intelligence (BAAI)](https://www.baai.ac.cn/english.html). `BAAI` is a private non-profit organization engaged in AI research and development.
|
||||
|
||||
See a [usage example](/docs/integrations/text_embedding/bge_huggingface).
|
||||
|
||||
```python
|
||||
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
||||
```
|
||||
|
||||
|
||||
## Tools
|
||||
|
||||
|
@ -1,14 +1,23 @@
|
||||
# DataForSEO
|
||||
|
||||
>[DataForSeo](https://dataforseo.com/) provides comprehensive SEO and digital marketing data solutions via API.
|
||||
|
||||
This page provides instructions on how to use the DataForSEO search APIs within LangChain.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
- Get a DataForSEO API Access login and password, and set them as environment variables (`DATAFORSEO_LOGIN` and `DATAFORSEO_PASSWORD` respectively). You can find it in your dashboard.
|
||||
Get a [DataForSEO API Access login and password](https://app.dataforseo.com/register), and set them as environment variables
|
||||
(`DATAFORSEO_LOGIN` and `DATAFORSEO_PASSWORD` respectively).
|
||||
|
||||
## Wrappers
|
||||
```python
|
||||
import os
|
||||
|
||||
### Utility
|
||||
os.environ["DATAFORSEO_LOGIN"] = "your_login"
|
||||
os.environ["DATAFORSEO_PASSWORD"] = "your_password"
|
||||
```
|
||||
|
||||
|
||||
## Utility
|
||||
|
||||
The DataForSEO utility wraps the API. To import this utility, use:
|
||||
|
||||
@ -18,7 +27,7 @@ from langchain.utilities.dataforseo_api_search import DataForSeoAPIWrapper
|
||||
|
||||
For a detailed walkthrough of this wrapper, see [this notebook](/docs/integrations/tools/dataforseo).
|
||||
|
||||
### Tool
|
||||
## Tool
|
||||
|
||||
You can also load this wrapper as a Tool to use with an Agent:
|
||||
|
||||
@ -34,18 +43,3 @@ dataforseo = DataForSeoAPIWrapper(api_login="your_login", api_password="your_pas
|
||||
result = dataforseo.run("Bill Gates")
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
You can store your DataForSEO API Access login and password as environment variables. The wrapper will automatically check for these environment variables if no values are provided:
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["DATAFORSEO_LOGIN"] = "your_login"
|
||||
os.environ["DATAFORSEO_PASSWORD"] = "your_password"
|
||||
|
||||
dataforseo = DataForSeoAPIWrapper()
|
||||
result = dataforseo.run("weather in Los Angeles")
|
||||
print(result)
|
||||
```
|
||||
|
@ -4,9 +4,13 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# DataForSeo\n",
|
||||
"# DataForSEO\n",
|
||||
"\n",
|
||||
"This notebook demonstrates how to use the `DataForSeo API` to obtain search engine results. The `DataForSeo API` retrieves `SERP` from most popular search engines like `Google`, `Bing`, `Yahoo`. It also allows to get SERPs from different search engine types like `Maps`, `News`, `Events`, etc.\n"
|
||||
">[DataForSeo](https://dataforseo.com/) provides comprehensive SEO and digital marketing data solutions via API.\n",
|
||||
">\n",
|
||||
">The `DataForSeo API` retrieves `SERP` from the most popular search engines like `Google`, `Bing`, `Yahoo`. It also allows to >get SERPs from different search engine types like `Maps`, `News`, `Events`, etc.\n",
|
||||
"\n",
|
||||
"This notebook demonstrates how to use the [DataForSeo API](https://dataforseo.com/apis) to obtain search engine results. "
|
||||
]
|
||||
},
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user