Add: USearch Vector Store (#8835)

## Description

I am excited to propose an integration with USearch, a lightweight
vector-search engine available for both Python and JavaScript, among
other languages.

## Dependencies

It introduces a new PyPi dependency - `usearch`. I am unsure if it must
be added to the Poetry file, as this would make the PR too clunky.
Please let me know.

## Profiles

- Maintainers: @ashvardanian @davvard
- Twitter handles: @ashvardanian @unum_cloud

---------

Co-authored-by: Davit Vardanyan <78792753+davvard@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Ash Vardanian
2023-08-08 04:41:00 +01:00
committed by GitHub
parent b52a3785c9
commit 1f9124ceaa
4 changed files with 432 additions and 0 deletions

View File

@@ -62,6 +62,7 @@ from langchain.vectorstores.supabase import SupabaseVectorStore
from langchain.vectorstores.tair import Tair
from langchain.vectorstores.tigris import Tigris
from langchain.vectorstores.typesense import Typesense
from langchain.vectorstores.usearch import USearch
from langchain.vectorstores.vectara import Vectara
from langchain.vectorstores.weaviate import Weaviate
from langchain.vectorstores.zilliz import Zilliz
@@ -120,4 +121,5 @@ __all__ = [
"Weaviate",
"Zilliz",
"PGVector",
"USearch",
]

View File

@@ -0,0 +1,176 @@
"""Wrapper around USearch vector database."""
from __future__ import annotations
from typing import Any, Dict, Iterable, List, Optional, Tuple
import numpy as np
from langchain.docstore.base import AddableMixin, Docstore
from langchain.docstore.document import Document
from langchain.docstore.in_memory import InMemoryDocstore
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
def dependable_usearch_import() -> Any:
"""
Import usearch if available, otherwise raise error.
"""
try:
import usearch.index
except ImportError:
raise ImportError(
"Could not import usearch python package. "
"Please install it with `pip install usearch` "
)
return usearch.index
class USearch(VectorStore):
"""Wrapper around USearch vector database.
To use, you should have the ``usearch`` python package installed.
"""
def __init__(
self,
embedding: Embeddings,
index: Any,
docstore: Docstore,
ids: List[str],
):
"""Initialize with necessary components."""
self.embedding = embedding
self.index = index
self.docstore = docstore
self.ids = ids
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[Dict]] = None,
ids: Optional[np.ndarray] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
embeddings = self.embedding.embed_documents(list(texts))
documents = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
last_id = int(self.ids[-1]) + 1
if ids is None:
ids = np.array([str(last_id + id) for id, _ in enumerate(texts)])
self.index.add(np.array(ids), np.array(embeddings))
self.docstore.add(dict(zip(ids, documents)))
self.ids.extend(ids)
return ids.tolist()
def similarity_search_with_score(
self,
query: str,
k: int = 4,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of documents most similar to the query with distance.
"""
query_embedding = self.embedding.embed_query(query)
matches = self.index.search(np.array(query_embedding), k)
docs_with_scores: List[Tuple[Document, float]] = []
for id, score in zip(matches.keys, matches.distances):
doc = self.docstore.search(str(id))
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {id}, got {doc}")
docs_with_scores.append((doc, score))
return docs_with_scores
def similarity_search(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
query_embedding = self.embedding.embed_query(query)
matches = self.index.search(np.array(query_embedding), k)
docs: List[Document] = []
for id in matches.keys:
doc = self.docstore.search(str(id))
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {id}, got {doc}")
docs.append(doc)
return docs
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict]] = None,
ids: Optional[np.ndarray] = None,
metric: str = "cos",
**kwargs: Any,
) -> USearch:
"""Construct USearch wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Creates an in memory docstore
3. Initializes the USearch database
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import USearch
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
usearch = USearch.from_texts(texts, embeddings)
"""
embeddings = embedding.embed_documents(texts)
documents: List[Document] = []
if ids is None:
ids = np.array([str(id) for id, _ in enumerate(texts)])
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
docstore = InMemoryDocstore(dict(zip(ids, documents)))
usearch = dependable_usearch_import()
index = usearch.Index(ndim=len(embeddings[0]), metric=metric)
index.add(np.array(ids), np.array(embeddings))
return cls(embedding, index, docstore, ids.tolist())

View File

@@ -0,0 +1,59 @@
"""Test USearch functionality."""
import pytest
from langchain.docstore.document import Document
from langchain.vectorstores.usearch import USearch
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
def test_usearch_from_texts() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = USearch.from_texts(texts, FakeEmbeddings())
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_usearch_from_documents() -> None:
"""Test from_documents constructor."""
texts = ["foo", "bar", "baz"]
docs = [Document(page_content=t, metadata={"a": "b"}) for t in texts]
docsearch = USearch.from_documents(docs, FakeEmbeddings())
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"a": "b"})]
def test_usearch_add_texts() -> None:
"""Test adding a new document"""
texts = ["foo", "bar", "baz"]
docsearch = USearch.from_texts(texts, FakeEmbeddings())
docsearch.add_texts(["foo"])
output = docsearch.similarity_search("foo", k=2)
assert output == [Document(page_content="foo"), Document(page_content="foo")]
def test_ip() -> None:
"""Test inner product distance."""
texts = ["foo", "bar", "baz"]
docsearch = USearch.from_texts(texts, FakeEmbeddings(), metric="ip")
output = docsearch.similarity_search_with_score("far", k=2)
_, score = output[1]
assert score == -8.0
def test_l2() -> None:
"""Test Flat L2 distance."""
texts = ["foo", "bar", "baz"]
docsearch = USearch.from_texts(texts, FakeEmbeddings(), metric="l2_sq")
output = docsearch.similarity_search_with_score("far", k=2)
_, score = output[1]
assert score == 1.0
def test_cos() -> None:
"""Test cosine distance."""
texts = ["foo", "bar", "baz"]
docsearch = USearch.from_texts(texts, FakeEmbeddings(), metric="cos")
output = docsearch.similarity_search_with_score("far", k=2)
_, score = output[1]
assert score == pytest.approx(0.05, abs=0.002)