mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-12 14:23:58 +00:00
[docs]: add doctoring to ChatTogether (#24636)
This commit is contained in:
parent
0fe29b4343
commit
218c554c4f
@ -19,19 +19,255 @@ from langchain_openai.chat_models.base import BaseChatOpenAI
|
||||
|
||||
|
||||
class ChatTogether(BaseChatOpenAI):
|
||||
"""ChatTogether chat model.
|
||||
r"""ChatTogether chat model.
|
||||
|
||||
To use, you should have the environment variable `TOGETHER_API_KEY`
|
||||
set with your API key or pass it as a named parameter to the constructor.
|
||||
Setup:
|
||||
Install ``langchain-together`` and set environment variable ``TOGETHER_API_KEY``.
|
||||
|
||||
Example:
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U langchain-together
|
||||
export TOGETHER_API_KEY="your-api-key"
|
||||
|
||||
|
||||
Key init args — completion params:
|
||||
model: str
|
||||
Name of model to use.
|
||||
temperature: float
|
||||
Sampling temperature.
|
||||
max_tokens: Optional[int]
|
||||
Max number of tokens to generate.
|
||||
logprobs: Optional[bool]
|
||||
Whether to return logprobs.
|
||||
|
||||
Key init args — client params:
|
||||
timeout: Union[float, Tuple[float, float], Any, None]
|
||||
Timeout for requests.
|
||||
max_retries: int
|
||||
Max number of retries.
|
||||
api_key: Optional[str]
|
||||
Together API key. If not passed in will be read from env var OPENAI_API_KEY.
|
||||
|
||||
Instantiate:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_together import ChatTogether
|
||||
from langhcain_together import ChatTogether
|
||||
|
||||
llm = ChatTogether(
|
||||
model="meta-llama/Llama-3-70b-chat-hf",
|
||||
temperature=0,
|
||||
max_tokens=None,
|
||||
timeout=None,
|
||||
max_retries=2,
|
||||
# api_key="...",
|
||||
# other params...
|
||||
)
|
||||
|
||||
Invoke:
|
||||
.. code-block:: python
|
||||
|
||||
messages = [
|
||||
(
|
||||
"system",
|
||||
"You are a helpful translator. Translate the user sentence to French.",
|
||||
),
|
||||
("human", "I love programming."),
|
||||
]
|
||||
llm.invoke(messages)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AIMessage(
|
||||
content="J'adore la programmation.",
|
||||
response_metadata={
|
||||
'token_usage': {'completion_tokens': 9, 'prompt_tokens': 32, 'total_tokens': 41},
|
||||
'model_name': 'meta-llama/Llama-3-70b-chat-hf',
|
||||
'system_fingerprint': None,
|
||||
'finish_reason': 'stop',
|
||||
'logprobs': None
|
||||
},
|
||||
id='run-168dceca-3b8b-4283-94e3-4c739dbc1525-0',
|
||||
usage_metadata={'input_tokens': 32, 'output_tokens': 9, 'total_tokens': 41})
|
||||
|
||||
Stream:
|
||||
.. code-block:: python
|
||||
|
||||
for chunk in llm.stream(messages):
|
||||
print(chunk)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
content='J' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
content="'" id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
content='ad' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
content='ore' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
content=' la' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
content=' programm' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
content='ation' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
content='.' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
content='' response_metadata={'finish_reason': 'stop', 'model_name': 'meta-llama/Llama-3-70b-chat-hf'} id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9'
|
||||
|
||||
|
||||
model = ChatTogether()
|
||||
"""
|
||||
Async:
|
||||
.. code-block:: python
|
||||
|
||||
await llm.ainvoke(messages)
|
||||
|
||||
# stream:
|
||||
# async for chunk in (await llm.astream(messages))
|
||||
|
||||
# batch:
|
||||
# await llm.abatch([messages])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AIMessage(
|
||||
content="J'adore la programmation.",
|
||||
response_metadata={
|
||||
'token_usage': {'completion_tokens': 9, 'prompt_tokens': 32, 'total_tokens': 41},
|
||||
'model_name': 'meta-llama/Llama-3-70b-chat-hf',
|
||||
'system_fingerprint': None,
|
||||
'finish_reason': 'stop',
|
||||
'logprobs': None
|
||||
},
|
||||
id='run-09371a11-7f72-4c53-8e7c-9de5c238b34c-0',
|
||||
usage_metadata={'input_tokens': 32, 'output_tokens': 9, 'total_tokens': 41})
|
||||
|
||||
Tool calling:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
# Only certain models support tool calling, check the together website to confirm compatibility
|
||||
llm = ChatTogether(model="mistralai/Mixtral-8x7B-Instruct-v0.1")
|
||||
|
||||
class GetWeather(BaseModel):
|
||||
'''Get the current weather in a given location'''
|
||||
|
||||
location: str = Field(
|
||||
..., description="The city and state, e.g. San Francisco, CA"
|
||||
)
|
||||
|
||||
class GetPopulation(BaseModel):
|
||||
'''Get the current population in a given location'''
|
||||
|
||||
location: str = Field(
|
||||
..., description="The city and state, e.g. San Francisco, CA"
|
||||
)
|
||||
|
||||
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
|
||||
ai_msg = llm_with_tools.invoke(
|
||||
"Which city is bigger: LA or NY?"
|
||||
)
|
||||
ai_msg.tool_calls
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[
|
||||
{
|
||||
'name': 'GetPopulation',
|
||||
'args': {'location': 'NY'},
|
||||
'id': 'call_m5tstyn2004pre9bfuxvom8x',
|
||||
'type': 'tool_call'
|
||||
},
|
||||
{
|
||||
'name': 'GetPopulation',
|
||||
'args': {'location': 'LA'},
|
||||
'id': 'call_0vjgq455gq1av5sp9eb1pw6a',
|
||||
'type': 'tool_call'
|
||||
}
|
||||
]
|
||||
|
||||
Structured output:
|
||||
.. code-block:: python
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
|
||||
class Joke(BaseModel):
|
||||
'''Joke to tell user.'''
|
||||
|
||||
setup: str = Field(description="The setup of the joke")
|
||||
punchline: str = Field(description="The punchline to the joke")
|
||||
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
||||
|
||||
|
||||
structured_llm = llm.with_structured_output(Joke)
|
||||
structured_llm.invoke("Tell me a joke about cats")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Joke(
|
||||
setup='Why was the cat sitting on the computer?',
|
||||
punchline='To keep an eye on the mouse!',
|
||||
rating=7
|
||||
)
|
||||
|
||||
JSON mode:
|
||||
.. code-block:: python
|
||||
|
||||
json_llm = llm.bind(response_format={"type": "json_object"})
|
||||
ai_msg = json_llm.invoke(
|
||||
"Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]"
|
||||
)
|
||||
ai_msg.content
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
' {\\n"random_ints": [\\n13,\\n54,\\n78,\\n45,\\n67,\\n90,\\n11,\\n29,\\n84,\\n33\\n]\\n}'
|
||||
|
||||
Token usage:
|
||||
.. code-block:: python
|
||||
|
||||
ai_msg = llm.invoke(messages)
|
||||
ai_msg.usage_metadata
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{'input_tokens': 37, 'output_tokens': 6, 'total_tokens': 43}
|
||||
|
||||
Logprobs:
|
||||
.. code-block:: python
|
||||
|
||||
logprobs_llm = llm.bind(logprobs=True)
|
||||
messages=[("human","Say Hello World! Do not return anything else.")]
|
||||
ai_msg = logprobs_llm.invoke(messages)
|
||||
ai_msg.response_metadata["logprobs"]
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{
|
||||
'content': None,
|
||||
'token_ids': [22557, 3304, 28808, 2],
|
||||
'tokens': [' Hello', ' World', '!', '</s>'],
|
||||
'token_logprobs': [-4.7683716e-06, -5.9604645e-07, 0, -0.057373047]
|
||||
}
|
||||
|
||||
|
||||
Response metadata
|
||||
.. code-block:: python
|
||||
|
||||
ai_msg = llm.invoke(messages)
|
||||
ai_msg.response_metadata
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{
|
||||
'token_usage': {
|
||||
'completion_tokens': 4,
|
||||
'prompt_tokens': 19,
|
||||
'total_tokens': 23
|
||||
},
|
||||
'model_name': 'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
||||
'system_fingerprint': None,
|
||||
'finish_reason': 'eos',
|
||||
'logprobs': None
|
||||
}
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
@property
|
||||
def lc_secrets(self) -> Dict[str, str]:
|
||||
|
Loading…
Reference in New Issue
Block a user