mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-11 15:35:09 +00:00
Harrison/bookend ai (#14258)
Co-authored-by: stvhu-bookend <142813359+stvhu-bookend@users.noreply.github.com>
This commit is contained in:
parent
0d47d15a9f
commit
2213fc9711
89
docs/docs/integrations/text_embedding/bookend.ipynb
Normal file
89
docs/docs/integrations/text_embedding/bookend.ipynb
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "2c591a6a42ac7f0",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Bookend AI\n",
|
||||||
|
"\n",
|
||||||
|
"Let's load the Bookend AI Embeddings class."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "d94c62b4",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.embeddings import BookendEmbeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "523a09e3",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"embeddings = BookendEmbeddings(\n",
|
||||||
|
" domain=\"your_domain\",\n",
|
||||||
|
" api_token=\"your_api_token\",\n",
|
||||||
|
" model_id=\"your_embeddings_model_id\",\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "b212bd5a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"text = \"This is a test document.\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "57db66bd",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"query_result = embeddings.embed_query(text)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "b790fd09",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"doc_result = embeddings.embed_documents([text])"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -22,6 +22,7 @@ from langchain.embeddings.awa import AwaEmbeddings
|
|||||||
from langchain.embeddings.azure_openai import AzureOpenAIEmbeddings
|
from langchain.embeddings.azure_openai import AzureOpenAIEmbeddings
|
||||||
from langchain.embeddings.baidu_qianfan_endpoint import QianfanEmbeddingsEndpoint
|
from langchain.embeddings.baidu_qianfan_endpoint import QianfanEmbeddingsEndpoint
|
||||||
from langchain.embeddings.bedrock import BedrockEmbeddings
|
from langchain.embeddings.bedrock import BedrockEmbeddings
|
||||||
|
from langchain.embeddings.bookend import BookendEmbeddings
|
||||||
from langchain.embeddings.cache import CacheBackedEmbeddings
|
from langchain.embeddings.cache import CacheBackedEmbeddings
|
||||||
from langchain.embeddings.clarifai import ClarifaiEmbeddings
|
from langchain.embeddings.clarifai import ClarifaiEmbeddings
|
||||||
from langchain.embeddings.cohere import CohereEmbeddings
|
from langchain.embeddings.cohere import CohereEmbeddings
|
||||||
@ -127,6 +128,7 @@ __all__ = [
|
|||||||
"QianfanEmbeddingsEndpoint",
|
"QianfanEmbeddingsEndpoint",
|
||||||
"JohnSnowLabsEmbeddings",
|
"JohnSnowLabsEmbeddings",
|
||||||
"VoyageEmbeddings",
|
"VoyageEmbeddings",
|
||||||
|
"BookendEmbeddings",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
91
libs/langchain/langchain/embeddings/bookend.py
Normal file
91
libs/langchain/langchain/embeddings/bookend.py
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
"""Wrapper around Bookend AI embedding models."""
|
||||||
|
|
||||||
|
import json
|
||||||
|
from typing import Any, List
|
||||||
|
|
||||||
|
import requests
|
||||||
|
|
||||||
|
from langchain.pydantic_v1 import BaseModel, Field
|
||||||
|
from langchain.schema.embeddings import Embeddings
|
||||||
|
|
||||||
|
API_URL = "https://api.bookend.ai/"
|
||||||
|
DEFAULT_TASK = "embeddings"
|
||||||
|
PATH = "/models/predict"
|
||||||
|
|
||||||
|
|
||||||
|
class BookendEmbeddings(BaseModel, Embeddings):
|
||||||
|
"""Bookend AI sentence_transformers embedding models.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.embeddings import BookendEmbeddings
|
||||||
|
|
||||||
|
bookend = BookendEmbeddings(
|
||||||
|
domain={domain}
|
||||||
|
api_token={api_token}
|
||||||
|
model_id={model_id}
|
||||||
|
)
|
||||||
|
bookend.embed_documents([
|
||||||
|
"Please put on these earmuffs because I can't you hear.",
|
||||||
|
"Baby wipes are made of chocolate stardust.",
|
||||||
|
])
|
||||||
|
bookend.embed_query(
|
||||||
|
"She only paints with bold colors; she does not like pastels."
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
|
||||||
|
domain: str
|
||||||
|
"""Request for a domain at https://bookend.ai/ to use this embeddings module."""
|
||||||
|
api_token: str
|
||||||
|
"""Request for an API token at https://bookend.ai/ to use this embeddings module."""
|
||||||
|
model_id: str
|
||||||
|
"""Embeddings model ID to use."""
|
||||||
|
auth_header: dict = Field(default_factory=dict)
|
||||||
|
|
||||||
|
def __init__(self, **kwargs: Any):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.auth_header = {"Authorization": "Basic {}".format(self.api_token)}
|
||||||
|
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Embed documents using a Bookend deployed embeddings model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
result = []
|
||||||
|
headers = self.auth_header
|
||||||
|
headers["Content-Type"] = "application/json; charset=utf-8"
|
||||||
|
params = {
|
||||||
|
"model_id": self.model_id,
|
||||||
|
"task": DEFAULT_TASK,
|
||||||
|
}
|
||||||
|
|
||||||
|
for text in texts:
|
||||||
|
data = json.dumps(
|
||||||
|
{"text": text, "question": None, "context": None, "instruction": None}
|
||||||
|
)
|
||||||
|
r = requests.request(
|
||||||
|
"POST",
|
||||||
|
API_URL + self.domain + PATH,
|
||||||
|
headers=headers,
|
||||||
|
params=params,
|
||||||
|
data=data,
|
||||||
|
)
|
||||||
|
result.append(r.json()[0]["data"])
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> List[float]:
|
||||||
|
"""Embed a query using a Bookend deployed embeddings model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings for the text.
|
||||||
|
"""
|
||||||
|
return self.embed_documents([text])[0]
|
@ -0,0 +1,27 @@
|
|||||||
|
"""Test Bookend AI embeddings."""
|
||||||
|
from langchain.embeddings.bookend import BookendEmbeddings
|
||||||
|
|
||||||
|
|
||||||
|
def test_bookend_embedding_documents() -> None:
|
||||||
|
"""Test Bookend AI embeddings for documents."""
|
||||||
|
documents = ["foo bar", "bar foo"]
|
||||||
|
embedding = BookendEmbeddings(
|
||||||
|
domain="<bookend_domain>",
|
||||||
|
api_token="<bookend_api_token>",
|
||||||
|
model_id="<bookend_embeddings_model_id>",
|
||||||
|
)
|
||||||
|
output = embedding.embed_documents(documents)
|
||||||
|
assert len(output) == 2
|
||||||
|
assert len(output[0]) == 768
|
||||||
|
|
||||||
|
|
||||||
|
def test_bookend_embedding_query() -> None:
|
||||||
|
"""Test Bookend AI embeddings for query."""
|
||||||
|
document = "foo bar"
|
||||||
|
embedding = BookendEmbeddings(
|
||||||
|
domain="<bookend_domain>",
|
||||||
|
api_token="<bookend_api_token>",
|
||||||
|
model_id="<bookend_embeddings_model_id>",
|
||||||
|
)
|
||||||
|
output = embedding.embed_query(document)
|
||||||
|
assert len(output) == 768
|
@ -53,6 +53,7 @@ EXPECTED_ALL = [
|
|||||||
"QianfanEmbeddingsEndpoint",
|
"QianfanEmbeddingsEndpoint",
|
||||||
"JohnSnowLabsEmbeddings",
|
"JohnSnowLabsEmbeddings",
|
||||||
"VoyageEmbeddings",
|
"VoyageEmbeddings",
|
||||||
|
"BookendEmbeddings",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user