diff --git a/docs/docs/integrations/providers/tensorlake.mdx b/docs/docs/integrations/providers/tensorlake.mdx new file mode 100644 index 00000000000..9690dddaa7e --- /dev/null +++ b/docs/docs/integrations/providers/tensorlake.mdx @@ -0,0 +1,96 @@ +# Tensorlake + +Tensorlake is the AI Data Cloud that reliably transforms data from unstructured sources into ingestion-ready formats for AI Applications. + +The `langchain-tensorlake` package provides seamless integration between [Tensorlake](https://tensorlake.ai) and [LangChain](https://langchain.com), +enabling you to build sophisticated document processing agents with enhanced parsing features, like signature detection. + +## Tensorlake feature overview + +Tensorlake gives you tools to: +- Extract: Schema-driven structured data extraction to pull out specific fields from documents. +- Parse: Convert documents to markdown to build RAG/Knowledge Graph systems. +- Orchestrate: Build programmable workflows for large-scale ingestion and enrichment of Documents, Text, Audio, Video and more. + +Learn more at [docs.tensorlake.ai](https://docs.tensorlake.ai/introduction) + +--- + +## Installation + +```bash +pip install -U langchain-tensorlake +``` + +--- + +## Examples + +Follow a [full tutorial](https://docs.tensorlake.ai/examples/tutorials/real-estate-agent-with-langgraph-cli) on how to detect signatures in unstructured documents using the `langchain-tensorlake` tool. + +Or check out this [colab notebook](https://colab.research.google.com/drive/1VRWIPCWYnjcRtQL864Bqm9CJ6g4EpRqs?usp=sharing) for a quick start. + +--- +## Quick Start + +### 1. Set up your environment + +You should configure credentials for Tensorlake and OpenAI by setting the following environment variables: +``` +export TENSORLAKE_API_KEY="your-tensorlake-api-key" +export OPENAI_API_KEY = "your-openai-api-key" +``` + +Get your Tensorlake API key from the [Tensorlake Cloud Console](https://cloud.tensorlake.ai/). New users get 100 free credits. + +### 2. Import necessary packages + +```python +from langchain_tensorlake import document_markdown_tool +from langgraph.prebuilt import create_react_agent +import asyncio +import os +``` + +### 3. Build a Signature Detection Agent + +```python +async def main(question): + # Create the agent with the Tensorlake tool + agent = create_react_agent( + model="openai:gpt-4o-mini", + tools=[document_markdown_tool], + prompt=( + """ + I have a document that needs to be parsed. \n\nPlease parse this document and answer the question about it. + """ + ), + name="real-estate-agent", + ) + + # Run the agent + result = await agent.ainvoke({"messages": [{"role": "user", "content": question}]}) + + # Print the result + print(result["messages"][-1].content) +``` + +*Note:* We highly recommend using `openai` as the agent model to ensure the agent sets the right parsing parameters + +### 4. Example Usage + +```python +# Define the path to the document to be parsed +path = "path/to/your/document.pdf" + +# Define the question to be asked and create the agent +question = f"What contextual information can you extract about the signatures in my document found at {path}?" + +if __name__ == "__main__": + asyncio.run(main(question)) +``` + +## Need help? + +Reach out to us on [Slack](https://join.slack.com/t/tensorlakecloud/shared_invite/zt-32fq4nmib-gO0OM5RIar3zLOBm~ZGqKg) or on the +[package repository on GitHub](https://github.com/tensorlakeai/langchain-tensorlake) directly. \ No newline at end of file diff --git a/libs/packages.yml b/libs/packages.yml index 80a69051116..163a8407421 100644 --- a/libs/packages.yml +++ b/libs/packages.yml @@ -692,4 +692,7 @@ packages: provider_page: ibm - name: langchain-greennode path: libs/greennode - repo: greennode-ai/langchain-greennode \ No newline at end of file + repo: greennode-ai/langchain-greennode +- name: langchain-tensorlake + path: . + repo: tensorlakeai/langchain-tensorlake