From 2282762528af300a80b5df394c9f3e3456b74843 Mon Sep 17 00:00:00 2001 From: Joey Constantino <15789096+joeconstantino@users.noreply.github.com> Date: Mon, 14 Apr 2025 12:34:54 -0700 Subject: [PATCH] docs: small Tableau docs update (#30827) Description: small Tableau docs update Issue: adds required environment variable Dependencies: tableau-langchain --------- Co-authored-by: Joe Constantino --- docs/docs/integrations/tools/tableau.ipynb | 60 +++++----------------- 1 file changed, 14 insertions(+), 46 deletions(-) diff --git a/docs/docs/integrations/tools/tableau.ipynb b/docs/docs/integrations/tools/tableau.ipynb index e82cc80b01d..a9c59951ff1 100644 --- a/docs/docs/integrations/tools/tableau.ipynb +++ b/docs/docs/integrations/tools/tableau.ipynb @@ -98,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "310d21b3", "metadata": {}, "outputs": [], @@ -125,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "ccfb4159-34ac-4816-a8f0-795c5442c0b2", "metadata": {}, "outputs": [], @@ -148,16 +148,16 @@ " \"TABLEAU_JWT_SECRET\"\n", ") # a JWT secret ID (obtained through Tableau's admin UI)\n", "tableau_api_version = \"3.21\" # the current Tableau REST API Version\n", - "tableau_user = \"joe.constantino@salesforce.com\" # replace with the username querying the target Tableau Data Source\n", + "tableau_user = \"joe.constantino@salesforce.com\" # enter the username querying the target Tableau Data Source\n", "\n", "# For this cookbook we are connecting to the Superstore dataset that comes by default with every Tableau server\n", "datasource_luid = (\n", " \"0965e61b-a072-43cf-994c-8c6cf526940d\" # the target data source for this Tool\n", ")\n", - "\n", + "model_provider = \"openai\" # the name of the model provider you are using for your Agent\n", "# Add variables to control LLM models for the Agent and Tools\n", "os.environ[\"OPENAI_API_KEY\"] # set an your model API key as an environment variable\n", - "tooling_llm_model = \"gpt-4o\"" + "tooling_llm_model = \"gpt-4o-mini\"" ] }, { @@ -178,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "72ee3eca", "metadata": {}, "outputs": [], @@ -194,6 +194,7 @@ " tableau_user=tableau_user,\n", " datasource_luid=datasource_luid,\n", " tooling_llm_model=tooling_llm_model,\n", + " model_provider=model_provider,\n", ")\n", "\n", "# load the List of Tools to be used by the Agent. In this case we will just load our data source Q&A tool.\n", @@ -211,47 +212,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "06a1d3f7-79a8-452e-b37e-9070d15445b0", "metadata": {}, - "outputs": [ - { - "data": { - "text/markdown": [ - "Here are the results for the states with the highest sales and profits based on the data queried:\n", - "\n", - "### States with the Most Sales\n", - "1. **California**: $457,687.63\n", - "2. **New York**: $310,876.27\n", - "3. **Texas**: $170,188.05\n", - "4. **Washington**: $138,641.27\n", - "5. **Pennsylvania**: $116,511.91\n", - "\n", - "### States with the Most Profit\n", - "1. **California**: $76,381.39\n", - "2. **New York**: $74,038.55\n", - "3. **Washington**: $33,402.65\n", - "4. **Michigan**: $24,463.19\n", - "5. **Virginia**: $18,597.95\n", - "\n", - "### Comparison\n", - "- **California** and **New York** are the only states that appear in both lists, indicating they are the top sellers and also generate the most profit.\n", - "- **Texas**, while having the third highest sales, does not rank in the top five for profit, showing a potential issue with profitability despite high sales.\n", - "\n", - "This analysis suggests that high sales do not always correlate with high profits, as seen with Texas." - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from IPython.display import Markdown, display\n", "\n", - "model = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", + "model = ChatOpenAI(model=\"gpt-4o\", temperature=0)\n", "\n", "tableauAgent = create_react_agent(model, tools)\n", "\n", @@ -261,13 +229,13 @@ " \"messages\": [\n", " (\n", " \"human\",\n", - " \"which states sell the most? Are those the same states with the most profits?\",\n", + " \"what's going on with table sales?\",\n", " )\n", " ]\n", " }\n", ")\n", "messages\n", - "# display(Markdown(messages['messages'][4].content)) #display a nicely formatted answer for successful generations" + "# display(Markdown(messages['messages'][3].content)) #display a nicely formatted answer for successful generations" ] }, { @@ -293,9 +261,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python (package_test_env)", + "display_name": "Python 3", "language": "python", - "name": "package_test_env" + "name": "python3" }, "language_info": { "codemirror_mode": {