Vector store support for Cassandra (#6426)

This addresses #6291 adding support for using Cassandra (and compatible
databases, such as DataStax Astra DB) as a [Vector
Store](https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-30%3A+Approximate+Nearest+Neighbor(ANN)+Vector+Search+via+Storage-Attached+Indexes).

A new class `Cassandra` is introduced, which complies with the contract
and interface for a vector store, along with the corresponding
integration test, a sample notebook and modified dependency toml.

Dependencies: the implementation relies on the library `cassio`, which
simplifies interacting with Cassandra for ML- and LLM-oriented
workloads. CassIO, in turn, uses the `cassandra-driver` low-lever
drivers to communicate with the database. The former is added as
optional dependency (+ in `extended_testing`), the latter was already in
the project.

Integration testing relies on a locally-running instance of Cassandra.
[Here](https://cassio.org/more_info/#use-a-local-vector-capable-cassandra)
a detailed description can be found on how to compile and run it (at the
time of writing the feature has not made it yet to a release).

During development of the integration tests, I added a new "fake
embedding" class for what I consider a more controlled way of testing
the MMR search method. Likewise, I had to amend what looked like a
glitch in the behaviour of `ConsistentFakeEmbeddings` whereby an
`embed_query` call would have bypassed storage of the requested text in
the class cache for use in later repeated invocations.

@dev2049 might be the right person to tag here for a review. Thank you!

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
This commit is contained in:
Stefano Lottini
2023-06-20 19:46:20 +02:00
committed by GitHub
parent cac6e45a67
commit 22af93d851
5 changed files with 835 additions and 0 deletions

View File

@@ -1,4 +1,5 @@
"""Fake Embedding class for testing purposes."""
import math
from typing import List
from langchain.embeddings.base import Embeddings
@@ -45,3 +46,29 @@ class ConsistentFakeEmbeddings(FakeEmbeddings):
if text not in self.known_texts:
return [float(1.0)] * 9 + [float(0.0)]
return [float(1.0)] * 9 + [float(self.known_texts.index(text))]
class AngularTwoDimensionalEmbeddings(Embeddings):
"""
From angles (as strings in units of pi) to unit embedding vectors on a circle.
"""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""
Make a list of texts into a list of embedding vectors.
"""
return [self.embed_query(text) for text in texts]
def embed_query(self, text: str) -> List[float]:
"""
Convert input text to a 'vector' (list of floats).
If the text is a number, use it as the angle for the
unit vector in units of pi.
Any other input text becomes the singular result [0, 0] !
"""
try:
angle = float(text)
return [math.cos(angle * math.pi), math.sin(angle * math.pi)]
except ValueError:
# Assume: just test string, no attention is paid to values.
return [0.0, 0.0]

View File

@@ -0,0 +1,135 @@
"""Test Cassandra functionality."""
from typing import List, Optional, Type
from cassandra.cluster import Cluster
from langchain.docstore.document import Document
from langchain.vectorstores import Cassandra
from tests.integration_tests.vectorstores.fake_embeddings import (
AngularTwoDimensionalEmbeddings,
ConsistentFakeEmbeddings,
Embeddings,
)
def _vectorstore_from_texts(
texts: List[str],
metadatas: Optional[List[dict]] = None,
embedding_class: Type[Embeddings] = ConsistentFakeEmbeddings,
drop: bool = True,
) -> Cassandra:
keyspace = "vector_test_keyspace"
table_name = "vector_test_table"
# get db connection
cluster = Cluster()
session = cluster.connect()
# ensure keyspace exists
session.execute(
(
f"CREATE KEYSPACE IF NOT EXISTS {keyspace} "
f"WITH replication = {{'class': 'SimpleStrategy', 'replication_factor': 1}}"
)
)
# drop table if required
if drop:
session.execute(f"DROP TABLE IF EXISTS {keyspace}.{table_name}")
#
return Cassandra.from_texts(
texts,
embedding_class(),
metadatas=metadatas,
session=session,
keyspace=keyspace,
table_name=table_name,
)
def test_cassandra() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = _vectorstore_from_texts(texts)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_cassandra_with_score() -> None:
"""Test end to end construction and search with scores and IDs."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = _vectorstore_from_texts(texts, metadatas=metadatas)
output = docsearch.similarity_search_with_score("foo", k=3)
docs = [o[0] for o in output]
scores = [o[1] for o in output]
assert docs == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
Document(page_content="baz", metadata={"page": 2}),
]
assert scores[0] > scores[1] > scores[2]
def test_cassandra_max_marginal_relevance_search() -> None:
"""
Test end to end construction and MMR search.
The embedding function used here ensures `texts` become
the following vectors on a circle (numbered v0 through v3):
______ v2
/ \
/ \ v1
v3 | . | query
\ / v0
\______/ (N.B. very crude drawing)
With fetch_k==3 and k==2, when query is at (1, ),
one expects that v2 and v0 are returned (in some order).
"""
texts = ["-0.125", "+0.125", "+0.25", "+1.0"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = _vectorstore_from_texts(
texts, metadatas=metadatas, embedding_class=AngularTwoDimensionalEmbeddings
)
output = docsearch.max_marginal_relevance_search("0.0", k=2, fetch_k=3)
output_set = {
(mmr_doc.page_content, mmr_doc.metadata["page"]) for mmr_doc in output
}
assert output_set == {
("+0.25", 2),
("-0.125", 0),
}
def test_cassandra_add_extra() -> None:
"""Test end to end construction with further insertions."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = _vectorstore_from_texts(texts, metadatas=metadatas)
docsearch.add_texts(texts, metadatas)
texts2 = ["foo2", "bar2", "baz2"]
docsearch.add_texts(texts2, metadatas)
output = docsearch.similarity_search("foo", k=10)
assert len(output) == 6
def test_cassandra_no_drop() -> None:
"""Test end to end construction and re-opening the same index."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = _vectorstore_from_texts(texts, metadatas=metadatas)
del docsearch
texts2 = ["foo2", "bar2", "baz2"]
docsearch = _vectorstore_from_texts(texts2, metadatas=metadatas, drop=False)
output = docsearch.similarity_search("foo", k=10)
assert len(output) == 6
# if __name__ == "__main__":
# test_cassandra()
# test_cassandra_with_score()
# test_cassandra_max_marginal_relevance_search()
# test_cassandra_add_extra()
# test_cassandra_no_drop()