mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-01 19:03:25 +00:00
Support Vald secure connection (#13269)
**Description:** When using Vald, only insecure grpc connection was supported, so secure connection is now supported. In addition, grpc metadata can be added to Vald requests to enable authentication with a token. <!-- Thank you for contributing to LangChain! Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes (if applicable), - **Dependencies:** any dependencies required for this change, - **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below), - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/extras` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. -->
This commit is contained in:
parent
54355b651a
commit
235bdb9fa7
@ -149,6 +149,156 @@
|
||||
"source": [
|
||||
"db.max_marginal_relevance_search(query, k=2, fetch_k=10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7dc7ce16-35af-49b7-8009-7eaadb7abbcb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example of using secure connection\n",
|
||||
"In order to run this notebook, it is necessary to run a Vald cluster with secure connection.\n",
|
||||
"\n",
|
||||
"Here is an example of a Vald cluster with the following configuration using [Athenz](https://github.com/AthenZ/athenz) authentication.\n",
|
||||
"\n",
|
||||
"ingress(TLS) -> [authorization-proxy](https://github.com/AthenZ/authorization-proxy)(Check athenz-role-auth in grpc metadata) -> vald-lb-gateway"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6894c02d-7a86-4600-bab1-f7e9cce79333",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import grpc\n",
|
||||
"\n",
|
||||
"with open(\"test_root_cacert.crt\", \"rb\") as root:\n",
|
||||
" credentials = grpc.ssl_channel_credentials(root_certificates=root.read())\n",
|
||||
"\n",
|
||||
"# Refresh is required for server use\n",
|
||||
"with open(\".ztoken\", \"rb\") as ztoken:\n",
|
||||
" token = ztoken.read().strip()\n",
|
||||
"\n",
|
||||
"metadata = [(b\"athenz-role-auth\", token)]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cc15c20b-485d-435e-a2ec-c7dcb9db40b5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Vald\n",
|
||||
"\n",
|
||||
"raw_documents = TextLoader(\"state_of_the_union.txt\").load()\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"documents = text_splitter.split_documents(raw_documents)\n",
|
||||
"embeddings = HuggingFaceEmbeddings()\n",
|
||||
"\n",
|
||||
"db = Vald.from_documents(\n",
|
||||
" documents,\n",
|
||||
" embeddings,\n",
|
||||
" host=\"localhost\",\n",
|
||||
" port=443,\n",
|
||||
" grpc_use_secure=True,\n",
|
||||
" grpc_credentials=credentials,\n",
|
||||
" grpc_metadata=metadata,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "069b96c6-6db2-46ce-a820-24e8933156a0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = db.similarity_search(query, grpc_metadata=metadata)\n",
|
||||
"docs[0].page_content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8327accb-6776-4a20-a325-b5da92e3a049",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Similarity search by vector"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d0ab2a97-83e4-490d-81a5-8aaa032d8811",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embedding_vector = embeddings.embed_query(query)\n",
|
||||
"docs = db.similarity_search_by_vector(embedding_vector, grpc_metadata=metadata)\n",
|
||||
"docs[0].page_content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f3f987bd-512e-4e29-acb3-e110e74b51a2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Similarity search with score"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "88dd39bc-8764-4a8c-ac89-06e2341aefa6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docs_and_scores = db.similarity_search_with_score(query, grpc_metadata=metadata)\n",
|
||||
"docs_and_scores[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fef1bd41-484e-4845-88a9-c7f504068db0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Maximal Marginal Relevance Search (MMR)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6cf08477-87b0-41ac-9536-52dec1c5d67f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = db.as_retriever(\n",
|
||||
" search_kwargs={\"search_type\": \"mmr\", \"grpc_metadata\": metadata}\n",
|
||||
")\n",
|
||||
"retriever.get_relevant_documents(query, grpc_metadata=metadata)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f994fa57-53e4-4fe6-9418-59a5136c6fe8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Or:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2111ce42-07c7-4ccc-bdbf-459165e3a410",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"db.max_marginal_relevance_search(query, k=2, fetch_k=10, grpc_metadata=metadata)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@ -167,7 +317,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -41,19 +41,40 @@ class Vald(VectorStore):
|
||||
("grpc.keepalive_time_ms", 1000 * 10),
|
||||
("grpc.keepalive_timeout_ms", 1000 * 10),
|
||||
),
|
||||
grpc_use_secure: bool = False,
|
||||
grpc_credentials: Optional[Any] = None,
|
||||
):
|
||||
self._embedding = embedding
|
||||
self.target = host + ":" + str(port)
|
||||
self.grpc_options = grpc_options
|
||||
self.grpc_use_secure = grpc_use_secure
|
||||
self.grpc_credentials = grpc_credentials
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Optional[Embeddings]:
|
||||
return self._embedding
|
||||
|
||||
def _get_channel(self) -> Any:
|
||||
try:
|
||||
import grpc
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import grpcio python package. "
|
||||
"Please install it with `pip install grpcio`."
|
||||
)
|
||||
return (
|
||||
grpc.secure_channel(
|
||||
self.target, self.grpc_credentials, options=self.grpc_options
|
||||
)
|
||||
if self.grpc_use_secure
|
||||
else grpc.insecure_channel(self.target, options=self.grpc_options)
|
||||
)
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
skip_strict_exist_check: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
@ -62,7 +83,6 @@ class Vald(VectorStore):
|
||||
skip_strict_exist_check: Deprecated. This is not used basically.
|
||||
"""
|
||||
try:
|
||||
import grpc
|
||||
from vald.v1.payload import payload_pb2
|
||||
from vald.v1.vald import upsert_pb2_grpc
|
||||
except ImportError:
|
||||
@ -71,7 +91,7 @@ class Vald(VectorStore):
|
||||
"Please install it with `pip install vald-client-python`."
|
||||
)
|
||||
|
||||
channel = grpc.insecure_channel(self.target, options=self.grpc_options)
|
||||
channel = self._get_channel()
|
||||
# Depending on the network quality,
|
||||
# it is necessary to wait for ChannelConnectivity.READY.
|
||||
# _ = grpc.channel_ready_future(channel).result(timeout=10)
|
||||
@ -82,7 +102,10 @@ class Vald(VectorStore):
|
||||
embs = self._embedding.embed_documents(list(texts))
|
||||
for text, emb in zip(texts, embs):
|
||||
vec = payload_pb2.Object.Vector(id=text, vector=emb)
|
||||
res = stub.Upsert(payload_pb2.Upsert.Request(vector=vec, config=cfg))
|
||||
res = stub.Upsert(
|
||||
payload_pb2.Upsert.Request(vector=vec, config=cfg),
|
||||
metadata=grpc_metadata,
|
||||
)
|
||||
ids.append(res.uuid)
|
||||
|
||||
channel.close()
|
||||
@ -92,6 +115,7 @@ class Vald(VectorStore):
|
||||
self,
|
||||
ids: Optional[List[str]] = None,
|
||||
skip_strict_exist_check: bool = False,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
**kwargs: Any,
|
||||
) -> Optional[bool]:
|
||||
"""
|
||||
@ -99,7 +123,6 @@ class Vald(VectorStore):
|
||||
skip_strict_exist_check: Deprecated. This is not used basically.
|
||||
"""
|
||||
try:
|
||||
import grpc
|
||||
from vald.v1.payload import payload_pb2
|
||||
from vald.v1.vald import remove_pb2_grpc
|
||||
except ImportError:
|
||||
@ -111,7 +134,7 @@ class Vald(VectorStore):
|
||||
if ids is None:
|
||||
raise ValueError("No ids provided to delete")
|
||||
|
||||
channel = grpc.insecure_channel(self.target, options=self.grpc_options)
|
||||
channel = self._get_channel()
|
||||
# Depending on the network quality,
|
||||
# it is necessary to wait for ChannelConnectivity.READY.
|
||||
# _ = grpc.channel_ready_future(channel).result(timeout=10)
|
||||
@ -120,7 +143,9 @@ class Vald(VectorStore):
|
||||
|
||||
for _id in ids:
|
||||
oid = payload_pb2.Object.ID(id=_id)
|
||||
_ = stub.Remove(payload_pb2.Remove.Request(id=oid, config=cfg))
|
||||
_ = stub.Remove(
|
||||
payload_pb2.Remove.Request(id=oid, config=cfg), metadata=grpc_metadata
|
||||
)
|
||||
|
||||
channel.close()
|
||||
return True
|
||||
@ -132,10 +157,11 @@ class Vald(VectorStore):
|
||||
radius: float = -1.0,
|
||||
epsilon: float = 0.01,
|
||||
timeout: int = 3000000000,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
docs_and_scores = self.similarity_search_with_score(
|
||||
query, k, radius, epsilon, timeout
|
||||
query, k, radius, epsilon, timeout, grpc_metadata
|
||||
)
|
||||
|
||||
docs = []
|
||||
@ -151,11 +177,12 @@ class Vald(VectorStore):
|
||||
radius: float = -1.0,
|
||||
epsilon: float = 0.01,
|
||||
timeout: int = 3000000000,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
emb = self._embedding.embed_query(query)
|
||||
docs_and_scores = self.similarity_search_with_score_by_vector(
|
||||
emb, k, radius, epsilon, timeout
|
||||
emb, k, radius, epsilon, timeout, grpc_metadata
|
||||
)
|
||||
|
||||
return docs_and_scores
|
||||
@ -167,10 +194,11 @@ class Vald(VectorStore):
|
||||
radius: float = -1.0,
|
||||
epsilon: float = 0.01,
|
||||
timeout: int = 3000000000,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
docs_and_scores = self.similarity_search_with_score_by_vector(
|
||||
embedding, k, radius, epsilon, timeout
|
||||
embedding, k, radius, epsilon, timeout, grpc_metadata
|
||||
)
|
||||
|
||||
docs = []
|
||||
@ -186,10 +214,10 @@ class Vald(VectorStore):
|
||||
radius: float = -1.0,
|
||||
epsilon: float = 0.01,
|
||||
timeout: int = 3000000000,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
try:
|
||||
import grpc
|
||||
from vald.v1.payload import payload_pb2
|
||||
from vald.v1.vald import search_pb2_grpc
|
||||
except ImportError:
|
||||
@ -198,7 +226,7 @@ class Vald(VectorStore):
|
||||
"Please install it with `pip install vald-client-python`."
|
||||
)
|
||||
|
||||
channel = grpc.insecure_channel(self.target, options=self.grpc_options)
|
||||
channel = self._get_channel()
|
||||
# Depending on the network quality,
|
||||
# it is necessary to wait for ChannelConnectivity.READY.
|
||||
# _ = grpc.channel_ready_future(channel).result(timeout=10)
|
||||
@ -207,7 +235,10 @@ class Vald(VectorStore):
|
||||
num=k, radius=radius, epsilon=epsilon, timeout=timeout
|
||||
)
|
||||
|
||||
res = stub.Search(payload_pb2.Search.Request(vector=embedding, config=cfg))
|
||||
res = stub.Search(
|
||||
payload_pb2.Search.Request(vector=embedding, config=cfg),
|
||||
metadata=grpc_metadata,
|
||||
)
|
||||
|
||||
docs_and_scores = []
|
||||
for result in res.results:
|
||||
@ -225,6 +256,7 @@ class Vald(VectorStore):
|
||||
radius: float = -1.0,
|
||||
epsilon: float = 0.01,
|
||||
timeout: int = 3000000000,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
emb = self._embedding.embed_query(query)
|
||||
@ -236,6 +268,7 @@ class Vald(VectorStore):
|
||||
epsilon=epsilon,
|
||||
timeout=timeout,
|
||||
lambda_mult=lambda_mult,
|
||||
grpc_metadata=grpc_metadata,
|
||||
)
|
||||
|
||||
return docs
|
||||
@ -249,10 +282,10 @@ class Vald(VectorStore):
|
||||
radius: float = -1.0,
|
||||
epsilon: float = 0.01,
|
||||
timeout: int = 3000000000,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
try:
|
||||
import grpc
|
||||
from vald.v1.payload import payload_pb2
|
||||
from vald.v1.vald import object_pb2_grpc
|
||||
except ImportError:
|
||||
@ -260,15 +293,19 @@ class Vald(VectorStore):
|
||||
"Could not import vald-client-python python package. "
|
||||
"Please install it with `pip install vald-client-python`."
|
||||
)
|
||||
|
||||
channel = grpc.insecure_channel(self.target, options=self.grpc_options)
|
||||
channel = self._get_channel()
|
||||
# Depending on the network quality,
|
||||
# it is necessary to wait for ChannelConnectivity.READY.
|
||||
# _ = grpc.channel_ready_future(channel).result(timeout=10)
|
||||
stub = object_pb2_grpc.ObjectStub(channel)
|
||||
|
||||
docs_and_scores = self.similarity_search_with_score_by_vector(
|
||||
embedding, fetch_k=fetch_k, radius=radius, epsilon=epsilon, timeout=timeout
|
||||
embedding,
|
||||
fetch_k=fetch_k,
|
||||
radius=radius,
|
||||
epsilon=epsilon,
|
||||
timeout=timeout,
|
||||
grpc_metadata=grpc_metadata,
|
||||
)
|
||||
|
||||
docs = []
|
||||
@ -277,7 +314,8 @@ class Vald(VectorStore):
|
||||
vec = stub.GetObject(
|
||||
payload_pb2.Object.VectorRequest(
|
||||
id=payload_pb2.Object.ID(id=doc.page_content)
|
||||
)
|
||||
),
|
||||
metadata=grpc_metadata,
|
||||
)
|
||||
embs.append(vec.vector)
|
||||
docs.append(doc)
|
||||
@ -304,6 +342,9 @@ class Vald(VectorStore):
|
||||
("grpc.keepalive_time_ms", 1000 * 10),
|
||||
("grpc.keepalive_timeout_ms", 1000 * 10),
|
||||
),
|
||||
grpc_use_secure: bool = False,
|
||||
grpc_credentials: Optional[Any] = None,
|
||||
grpc_metadata: Optional[Any] = None,
|
||||
skip_strict_exist_check: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Vald:
|
||||
@ -316,11 +357,14 @@ class Vald(VectorStore):
|
||||
host=host,
|
||||
port=port,
|
||||
grpc_options=grpc_options,
|
||||
grpc_use_secure=grpc_use_secure,
|
||||
grpc_credentials=grpc_credentials,
|
||||
**kwargs,
|
||||
)
|
||||
vald.add_texts(
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
grpc_metadata=grpc_metadata,
|
||||
skip_strict_exist_check=skip_strict_exist_check,
|
||||
)
|
||||
return vald
|
||||
|
Loading…
Reference in New Issue
Block a user