mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 14:31:55 +00:00
langchain[minor]: Make EmbeddingsFilters async (#22737)
Add native async implementation for EmbeddingsFilter
This commit is contained in:
@@ -27,3 +27,24 @@ def test_document_compressor_pipeline() -> None:
|
||||
actual = pipeline_filter.compress_documents(docs, "Tell me about farm animals")
|
||||
assert len(actual) == 1
|
||||
assert actual[0].page_content in texts[:2]
|
||||
|
||||
|
||||
async def test_adocument_compressor_pipeline() -> None:
|
||||
embeddings = OpenAIEmbeddings()
|
||||
splitter = CharacterTextSplitter(chunk_size=20, chunk_overlap=0, separator=". ")
|
||||
redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings)
|
||||
relevant_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.8)
|
||||
pipeline_filter = DocumentCompressorPipeline(
|
||||
transformers=[splitter, redundant_filter, relevant_filter]
|
||||
)
|
||||
texts = [
|
||||
"This sentence is about cows",
|
||||
"This sentence was about cows",
|
||||
"foo bar baz",
|
||||
]
|
||||
docs = [Document(page_content=". ".join(texts))]
|
||||
actual = await pipeline_filter.acompress_documents(
|
||||
docs, "Tell me about farm animals"
|
||||
)
|
||||
assert len(actual) == 1
|
||||
assert actual[0].page_content in texts[:2]
|
||||
|
@@ -23,6 +23,20 @@ def test_embeddings_filter() -> None:
|
||||
assert len(set(texts[:2]).intersection([d.page_content for d in actual])) == 2
|
||||
|
||||
|
||||
async def atest_embeddings_filter() -> None:
|
||||
texts = [
|
||||
"What happened to all of my cookies?",
|
||||
"I wish there were better Italian restaurants in my neighborhood.",
|
||||
"My favorite color is green",
|
||||
]
|
||||
docs = [Document(page_content=t) for t in texts]
|
||||
embeddings = OpenAIEmbeddings()
|
||||
relevant_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.75)
|
||||
actual = relevant_filter.compress_documents(docs, "What did I say about food?")
|
||||
assert len(actual) == 2
|
||||
assert len(set(texts[:2]).intersection([d.page_content for d in actual])) == 2
|
||||
|
||||
|
||||
def test_embeddings_filter_with_state() -> None:
|
||||
texts = [
|
||||
"What happened to all of my cookies?",
|
||||
@@ -41,3 +55,23 @@ def test_embeddings_filter_with_state() -> None:
|
||||
actual = relevant_filter.compress_documents(docs, query)
|
||||
assert len(actual) == 1
|
||||
assert texts[-1] == actual[0].page_content
|
||||
|
||||
|
||||
async def test_aembeddings_filter_with_state() -> None:
|
||||
texts = [
|
||||
"What happened to all of my cookies?",
|
||||
"I wish there were better Italian restaurants in my neighborhood.",
|
||||
"My favorite color is green",
|
||||
]
|
||||
query = "What did I say about food?"
|
||||
embeddings = OpenAIEmbeddings()
|
||||
embedded_query = embeddings.embed_query(query)
|
||||
state = {"embedded_doc": np.zeros(len(embedded_query))}
|
||||
docs = [_DocumentWithState(page_content=t, state=state) for t in texts]
|
||||
docs[-1].state = {"embedded_doc": embedded_query}
|
||||
relevant_filter = EmbeddingsFilter( # type: ignore[call-arg]
|
||||
embeddings=embeddings, similarity_threshold=0.75, return_similarity_scores=True
|
||||
)
|
||||
actual = relevant_filter.compress_documents(docs, query)
|
||||
assert len(actual) == 1
|
||||
assert texts[-1] == actual[0].page_content
|
||||
|
@@ -1,3 +1,4 @@
|
||||
import pytest
|
||||
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
|
||||
from langchain.retrievers.document_compressors import EmbeddingsFilter
|
||||
|
||||
@@ -24,3 +25,25 @@ def test_contextual_compression_retriever_get_relevant_docs() -> None:
|
||||
actual = retriever.invoke("Tell me about the Celtics")
|
||||
assert len(actual) == 2
|
||||
assert texts[-1] not in [d.page_content for d in actual]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_acontextual_compression_retriever_get_relevant_docs() -> None:
|
||||
"""Test get_relevant_docs."""
|
||||
texts = [
|
||||
"This is a document about the Boston Celtics",
|
||||
"The Boston Celtics won the game by 20 points",
|
||||
"I simply love going to the movies",
|
||||
]
|
||||
embeddings = OpenAIEmbeddings()
|
||||
base_compressor = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.75)
|
||||
base_retriever = FAISS.from_texts(texts, embedding=embeddings).as_retriever(
|
||||
search_kwargs={"k": len(texts)}
|
||||
)
|
||||
retriever = ContextualCompressionRetriever(
|
||||
base_compressor=base_compressor, base_retriever=base_retriever
|
||||
)
|
||||
|
||||
actual = retriever.invoke("Tell me about the Celtics")
|
||||
assert len(actual) == 2
|
||||
assert texts[-1] not in [d.page_content for d in actual]
|
||||
|
Reference in New Issue
Block a user