community[minor]: infinity embedding local option (#17671)

**drop-in-replacement for sentence-transformers
inference.**

https://github.com/langchain-ai/langchain/discussions/17670

tldr from the discussion above -> around a 4x-22x speedup over using
SentenceTransformers / huggingface embeddings. For more info:
https://github.com/michaelfeil/infinity (pure-python dependency)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Michael Feil
2024-02-21 16:33:13 -08:00
committed by GitHub
parent 581095b9b5
commit 242981b8f0
5 changed files with 323 additions and 22 deletions

View File

@@ -51,6 +51,7 @@ from langchain_community.embeddings.huggingface import (
)
from langchain_community.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
from langchain_community.embeddings.infinity import InfinityEmbeddings
from langchain_community.embeddings.infinity_local import InfinityEmbeddingsLocal
from langchain_community.embeddings.javelin_ai_gateway import JavelinAIGatewayEmbeddings
from langchain_community.embeddings.jina import JinaEmbeddings
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
@@ -105,6 +106,7 @@ __all__ = [
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"InfinityEmbeddingsLocal",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",

View File

@@ -0,0 +1,156 @@
"""written under MIT Licence, Michael Feil 2023."""
import asyncio
from logging import getLogger
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
__all__ = ["InfinityEmbeddingsLocal"]
logger = getLogger(__name__)
class InfinityEmbeddingsLocal(BaseModel, Embeddings):
"""Optimized Embedding models https://github.com/michaelfeil/infinity
This class deploys a local Infinity instance to embed text.
The class requires async usage.
Infinity is a class to interact with Embedding Models on https://github.com/michaelfeil/infinity
Example:
.. code-block:: python
from langchain_community.embeddings import InfinityEmbeddingsLocal
async with InfinityEmbeddingsLocal(
model="BAAI/bge-small-en-v1.5",
revision=None,
device="cpu",
) as embedder:
embeddings = await engine.aembed_documents(["text1", "text2"])
"""
model: str
"Underlying model id from huggingface, e.g. BAAI/bge-small-en-v1.5"
revision: Optional[str] = None
"Model version, the commit hash from huggingface"
batch_size: int = 32
"Internal batch size for inference, e.g. 32"
device: str = "auto"
"Device to use for inference, e.g. 'cpu' or 'cuda', or 'mps'"
backend: str = "torch"
"Backend for inference, e.g. 'torch' (recommended for ROCm/Nvidia)"
" or 'optimum' for onnx/tensorrt"
model_warmup: bool = True
"Warmup the model with the max batch size."
engine: Any = None #: :meta private:
"""Infinity's AsyncEmbeddingEngine."""
# LLM call kwargs
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
try:
from infinity_emb import AsyncEmbeddingEngine # type: ignore
except ImportError:
raise ImportError(
"Please install the "
"`pip install 'infinity_emb[optimum,torch]>=0.0.24'` "
"package to use the InfinityEmbeddingsLocal."
)
logger.debug(f"Using InfinityEmbeddingsLocal with kwargs {values}")
values["engine"] = AsyncEmbeddingEngine(
model_name_or_path=values["model"],
device=values["device"],
revision=values["revision"],
model_warmup=values["model_warmup"],
batch_size=values["batch_size"],
engine=values["backend"],
)
return values
async def __aenter__(self) -> None:
"""start the background worker.
recommended usage is with the async with statement.
async with InfinityEmbeddingsLocal(
model="BAAI/bge-small-en-v1.5",
revision=None,
device="cpu",
) as embedder:
embeddings = await engine.aembed_documents(["text1", "text2"])
"""
await self.engine.__aenter__()
async def __aexit__(self, *args: Any) -> None:
"""stop the background worker,
required to free references to the pytorch model."""
await self.engine.__aexit__(*args)
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Async call out to Infinity's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
if not self.engine.running:
logger.warning(
"Starting Infinity engine on the fly. This is not recommended."
"Please start the engine before using it."
)
async with self:
# spawning threadpool for multithreaded encode, tokenization
embeddings, _ = await self.engine.embed(texts)
# stopping threadpool on exit
logger.warning("Stopped infinity engine after usage.")
else:
embeddings, _ = await self.engine.embed(texts)
return embeddings
async def aembed_query(self, text: str) -> List[float]:
"""Async call out to Infinity's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embeddings = await self.aembed_documents([text])
return embeddings[0]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""
This method is async only.
"""
logger.warning(
"This method is async only. "
"Please use the async version `await aembed_documents`."
)
return asyncio.run(self.aembed_documents(texts))
def embed_query(self, text: str) -> List[float]:
""" """
logger.warning(
"This method is async only."
" Please use the async version `await aembed_query`."
)
return asyncio.run(self.aembed_query(text))

View File

@@ -12,6 +12,7 @@ EXPECTED_ALL = [
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"InfinityEmbeddingsLocal",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",

View File

@@ -0,0 +1,43 @@
import numpy as np
import pytest
from langchain_community.embeddings.infinity_local import InfinityEmbeddingsLocal
try:
import torch # noqa
import infinity_emb # noqa
IMPORTED_TORCH = True
except ImportError:
IMPORTED_TORCH = False
@pytest.mark.skipif(not IMPORTED_TORCH, reason="torch not installed")
@pytest.mark.asyncio
async def test_local_infinity_embeddings() -> None:
embedder = InfinityEmbeddingsLocal(
model="TaylorAI/bge-micro-v2",
device="cpu",
backend="torch",
revision=None,
batch_size=2,
model_warmup=False,
)
async with embedder:
embeddings = await embedder.aembed_documents(["text1", "text2", "text1"])
assert len(embeddings) == 3
# model has 384 dim output
assert len(embeddings[0]) == 384
assert len(embeddings[1]) == 384
assert len(embeddings[2]) == 384
# assert all different embeddings
assert (np.array(embeddings[0]) - np.array(embeddings[1]) != 0).all()
# assert identical embeddings, up to floating point error
np.testing.assert_array_equal(embeddings[0], embeddings[2])
if __name__ == "__main__":
import asyncio
asyncio.run(test_local_infinity_embeddings())