docs: fix milvus import and update template (#22306)

docs: fix milvus import problem
update milvus-rag template with milvus-lite

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
This commit is contained in:
ChengZi
2024-05-30 23:28:55 +08:00
committed by GitHub
parent 86698b02a9
commit 2443e85533
6 changed files with 41 additions and 375 deletions

View File

@@ -1,12 +1,23 @@
from langchain_community.vectorstores import Milvus
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_milvus.vectorstores import Milvus
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
# Example for document loading (from url), splitting, and creating vectorstore
# Setting the URI as a local file, e.g.`./milvus.db`, is the most convenient method,
# as it automatically utilizes Milvus Lite to store all data in this file.
#
# If you have large scale of data such as more than a million docs,
# we recommend setting up a more performant Milvus server on docker or kubernetes.
# (https://milvus.io/docs/quickstart.md)
# When using this setup, please use the server URI,
# e.g.`http://localhost:19530`, as your URI.
URI = "./milvus.db"
"""
# Load
from langchain_community.document_loaders import WebBaseLoader
@@ -25,6 +36,7 @@ vectorstore = Milvus.from_documents(documents=all_splits,
collection_name="rag_milvus",
embedding=OpenAIEmbeddings(),
drop_old=True,
connection_args={"uri": URI},
)
retriever = vectorstore.as_retriever()
"""
@@ -35,9 +47,7 @@ vectorstore = Milvus.from_texts(
collection_name="rag_milvus",
embedding=OpenAIEmbeddings(),
drop_old=True,
connection_args={
"uri": "http://127.0.0.1:19530",
},
connection_args={"uri": URI},
)
retriever = vectorstore.as_retriever()