mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-05 19:15:44 +00:00
community[patch]: Fix missing protected_namespaces(). (#27610)
- [x] **PR message**: - **Description:** Fixes warning messages raised due to missing `protected_namespaces` parameter in `ConfigDict`. - **Issue:** https://github.com/langchain-ai/langchain/issues/27609 - **Dependencies:** No dependencies - **Twitter handle:** @gawbul
This commit is contained in:
parent
7667ee126f
commit
24605bcdb6
@ -2,7 +2,7 @@ import os
|
|||||||
from typing import Any, Dict, List, Optional
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from pydantic import BaseModel, model_validator
|
from pydantic import BaseModel, ConfigDict, model_validator
|
||||||
|
|
||||||
|
|
||||||
class AscendEmbeddings(Embeddings, BaseModel):
|
class AscendEmbeddings(Embeddings, BaseModel):
|
||||||
@ -33,6 +33,8 @@ class AscendEmbeddings(Embeddings, BaseModel):
|
|||||||
model: Any
|
model: Any
|
||||||
tokenizer: Any
|
tokenizer: Any
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
try:
|
try:
|
||||||
|
@ -5,7 +5,7 @@ from typing import Any, Dict, List, Optional
|
|||||||
|
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
|
||||||
from pydantic import BaseModel, Field, SecretStr
|
from pydantic import BaseModel, ConfigDict, Field, SecretStr
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -81,6 +81,8 @@ class QianfanEmbeddingsEndpoint(BaseModel, Embeddings):
|
|||||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||||
"""extra params for model invoke using with `do`."""
|
"""extra params for model invoke using with `do`."""
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
@pre_init
|
@pre_init
|
||||||
def validate_environment(cls, values: Dict) -> Dict:
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
"""
|
"""
|
||||||
|
@ -5,7 +5,7 @@ from typing import Any, List
|
|||||||
|
|
||||||
import requests
|
import requests
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, ConfigDict, Field
|
||||||
|
|
||||||
API_URL = "https://api.bookend.ai/"
|
API_URL = "https://api.bookend.ai/"
|
||||||
DEFAULT_TASK = "embeddings"
|
DEFAULT_TASK = "embeddings"
|
||||||
@ -42,6 +42,8 @@ class BookendEmbeddings(BaseModel, Embeddings):
|
|||||||
"""Embeddings model ID to use."""
|
"""Embeddings model ID to use."""
|
||||||
auth_header: dict = Field(default_factory=dict)
|
auth_header: dict = Field(default_factory=dict)
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
def __init__(self, **kwargs: Any):
|
def __init__(self, **kwargs: Any):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.auth_header = {"Authorization": "Basic {}".format(self.api_token)}
|
self.auth_header = {"Authorization": "Basic {}".format(self.api_token)}
|
||||||
|
@ -8,7 +8,7 @@ from langchain_core._api.deprecation import deprecated
|
|||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from langchain_core.runnables.config import run_in_executor
|
from langchain_core.runnables.config import run_in_executor
|
||||||
from langchain_core.utils import get_from_dict_or_env, pre_init
|
from langchain_core.utils import get_from_dict_or_env, pre_init
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel, ConfigDict
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -31,6 +31,8 @@ class ErnieEmbeddings(BaseModel, Embeddings):
|
|||||||
|
|
||||||
_lock = threading.Lock()
|
_lock = threading.Lock()
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
@pre_init
|
@pre_init
|
||||||
def validate_environment(cls, values: Dict) -> Dict:
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
values["ernie_api_base"] = get_from_dict_or_env(
|
values["ernie_api_base"] = get_from_dict_or_env(
|
||||||
|
@ -5,7 +5,7 @@ from typing import Any, Callable, Dict, List, Optional
|
|||||||
|
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from langchain_core.utils import get_from_dict_or_env, pre_init
|
from langchain_core.utils import get_from_dict_or_env, pre_init
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel, ConfigDict
|
||||||
from tenacity import (
|
from tenacity import (
|
||||||
before_sleep_log,
|
before_sleep_log,
|
||||||
retry,
|
retry,
|
||||||
@ -62,6 +62,8 @@ class GooglePalmEmbeddings(BaseModel, Embeddings):
|
|||||||
show_progress_bar: bool = False
|
show_progress_bar: bool = False
|
||||||
"""Whether to show a tqdm progress bar. Must have `tqdm` installed."""
|
"""Whether to show a tqdm progress bar. Must have `tqdm` installed."""
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
@pre_init
|
@pre_init
|
||||||
def validate_environment(cls, values: Dict) -> Dict:
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
"""Validate api key, python package exists."""
|
"""Validate api key, python package exists."""
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
from typing import Any, Dict, List, Optional
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from pydantic import BaseModel, model_validator
|
from pydantic import BaseModel, ConfigDict, model_validator
|
||||||
|
|
||||||
|
|
||||||
class GPT4AllEmbeddings(BaseModel, Embeddings):
|
class GPT4AllEmbeddings(BaseModel, Embeddings):
|
||||||
@ -28,6 +28,8 @@ class GPT4AllEmbeddings(BaseModel, Embeddings):
|
|||||||
gpt4all_kwargs: Optional[dict] = {}
|
gpt4all_kwargs: Optional[dict] = {}
|
||||||
client: Any #: :meta private:
|
client: Any #: :meta private:
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
@model_validator(mode="before")
|
@model_validator(mode="before")
|
||||||
@classmethod
|
@classmethod
|
||||||
def validate_environment(cls, values: Dict) -> Any:
|
def validate_environment(cls, values: Dict) -> Any:
|
||||||
|
@ -60,6 +60,7 @@ class InfinityEmbeddingsLocal(BaseModel, Embeddings):
|
|||||||
# LLM call kwargs
|
# LLM call kwargs
|
||||||
model_config = ConfigDict(
|
model_config = ConfigDict(
|
||||||
extra="forbid",
|
extra="forbid",
|
||||||
|
protected_namespaces=(),
|
||||||
)
|
)
|
||||||
|
|
||||||
@model_validator(mode="after")
|
@model_validator(mode="after")
|
||||||
|
@ -120,6 +120,7 @@ class QuantizedBgeEmbeddings(BaseModel, Embeddings):
|
|||||||
|
|
||||||
model_config = ConfigDict(
|
model_config = ConfigDict(
|
||||||
extra="allow",
|
extra="allow",
|
||||||
|
protected_namespaces=(),
|
||||||
)
|
)
|
||||||
|
|
||||||
def _embed(self, inputs: Any) -> Any:
|
def _embed(self, inputs: Any) -> Any:
|
||||||
|
@ -6,7 +6,7 @@ from urllib.parse import urlparse
|
|||||||
import requests
|
import requests
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||||||
from pydantic import BaseModel, SecretStr, model_validator
|
from pydantic import BaseModel, ConfigDict, SecretStr, model_validator
|
||||||
|
|
||||||
JINA_API_URL: str = "https://api.jina.ai/v1/embeddings"
|
JINA_API_URL: str = "https://api.jina.ai/v1/embeddings"
|
||||||
|
|
||||||
@ -46,6 +46,8 @@ class JinaEmbeddings(BaseModel, Embeddings):
|
|||||||
model_name: str = "jina-embeddings-v2-base-en"
|
model_name: str = "jina-embeddings-v2-base-en"
|
||||||
jina_api_key: Optional[SecretStr] = None
|
jina_api_key: Optional[SecretStr] = None
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
@model_validator(mode="before")
|
@model_validator(mode="before")
|
||||||
@classmethod
|
@classmethod
|
||||||
def validate_environment(cls, values: Dict) -> Any:
|
def validate_environment(cls, values: Dict) -> Any:
|
||||||
|
@ -63,6 +63,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
|||||||
|
|
||||||
model_config = ConfigDict(
|
model_config = ConfigDict(
|
||||||
extra="forbid",
|
extra="forbid",
|
||||||
|
protected_namespaces=(),
|
||||||
)
|
)
|
||||||
|
|
||||||
@model_validator(mode="after")
|
@model_validator(mode="after")
|
||||||
|
@ -2,7 +2,7 @@ from typing import Any, Dict, List
|
|||||||
|
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from langchain_core.utils import get_from_dict_or_env, pre_init
|
from langchain_core.utils import get_from_dict_or_env, pre_init
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel, ConfigDict
|
||||||
|
|
||||||
|
|
||||||
class NLPCloudEmbeddings(BaseModel, Embeddings):
|
class NLPCloudEmbeddings(BaseModel, Embeddings):
|
||||||
@ -22,6 +22,8 @@ class NLPCloudEmbeddings(BaseModel, Embeddings):
|
|||||||
gpu: bool # Define gpu as a class attribute
|
gpu: bool # Define gpu as a class attribute
|
||||||
client: Any #: :meta private:
|
client: Any #: :meta private:
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
model_name: str = "paraphrase-multilingual-mpnet-base-v2",
|
model_name: str = "paraphrase-multilingual-mpnet-base-v2",
|
||||||
|
@ -102,6 +102,7 @@ For more information, please visit:
|
|||||||
|
|
||||||
model_config = ConfigDict(
|
model_config = ConfigDict(
|
||||||
extra="allow",
|
extra="allow",
|
||||||
|
protected_namespaces=(),
|
||||||
)
|
)
|
||||||
|
|
||||||
def _embed(self, inputs: Any) -> Any:
|
def _embed(self, inputs: Any) -> Any:
|
||||||
|
@ -4,7 +4,7 @@ from typing import Dict, Generator, List, Optional
|
|||||||
import requests
|
import requests
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from langchain_core.utils import get_from_dict_or_env, pre_init
|
from langchain_core.utils import get_from_dict_or_env, pre_init
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel, ConfigDict
|
||||||
|
|
||||||
|
|
||||||
class SambaStudioEmbeddings(BaseModel, Embeddings):
|
class SambaStudioEmbeddings(BaseModel, Embeddings):
|
||||||
@ -64,6 +64,8 @@ class SambaStudioEmbeddings(BaseModel, Embeddings):
|
|||||||
batch_size: int = 32
|
batch_size: int = 32
|
||||||
"""Batch size for the embedding models"""
|
"""Batch size for the embedding models"""
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
@pre_init
|
@pre_init
|
||||||
def validate_environment(cls, values: Dict) -> Dict:
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
"""Validate that api key and python package exists in environment."""
|
"""Validate that api key and python package exists in environment."""
|
||||||
|
@ -45,6 +45,7 @@ class TensorflowHubEmbeddings(BaseModel, Embeddings):
|
|||||||
|
|
||||||
model_config = ConfigDict(
|
model_config = ConfigDict(
|
||||||
extra="forbid",
|
extra="forbid",
|
||||||
|
protected_namespaces=(),
|
||||||
)
|
)
|
||||||
|
|
||||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
from typing import Any, List, Optional
|
from typing import Any, List, Optional
|
||||||
|
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel, ConfigDict
|
||||||
|
|
||||||
|
|
||||||
class Text2vecEmbeddings(Embeddings, BaseModel):
|
class Text2vecEmbeddings(Embeddings, BaseModel):
|
||||||
@ -33,6 +33,8 @@ class Text2vecEmbeddings(Embeddings, BaseModel):
|
|||||||
device: Optional[str] = None
|
device: Optional[str] = None
|
||||||
model: Any = None
|
model: Any = None
|
||||||
|
|
||||||
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
*,
|
*,
|
||||||
|
Loading…
Reference in New Issue
Block a user