mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-27 00:48:45 +00:00
community[minor]: Azure DocumentIntelligenceLoader/Parser support update with latest SDK (#14389)
- **Description:** Add DocumentIntelligenceLoader & DocumentIntelligenceParser implementation using the latest Azure Document Intelligence SDK with markdown support. The core logic resides in DocumentIntelligenceParser and DocumentIntelligenceLoader is a mere wrapper of the parser. The parser will takes api_endpoint and api_key and creates DocumentIntelligenceClient for the user. 4 parsing modes are supported: 1. Markdown (default) 2. Single 3. Page 4. Object UT and notebook are also updated accordingly. - **Dependencies:** Azure Document Intelligence SDK: azure-ai-documentintelligence [azure-sdk-for-python/sdk/documentintelligence/azure-ai-documentintelligence at 7c42462ac662522a6fd21b17d2a20f4cd40d0356 · Azure/azure-sdk-for-python (github.com)](https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FAzure%2Fazure-sdk-for-python%2Ftree%2F7c42462ac662522a6fd21b17d2a20f4cd40d0356%2Fsdk%2Fdocumentintelligence%2Fazure-ai-documentintelligence&data=05%7C01%7CZifei.Qian%40microsoft.com%7C298225aa3e31468a863108dbf07374ff%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C638368150928704292%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=oE0Sl4HERnMKdbkV9KgBV46Z2xytcQAShdTWf7ZNl%2Bs%3D&reserved=0). --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
129a929d69
commit
2460f977c5
@ -5,7 +5,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Azure Document Intelligence"
|
||||
"# Azure AI Document Intelligence"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -13,7 +13,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Azure Document Intelligence (formerly known as Azure Forms Recognizer) is machine-learning \n",
|
||||
"Azure AI Document Intelligence (formerly known as Azure Form Recognizer) is machine-learning \n",
|
||||
"based service that extracts text (including handwriting), tables or key-value-pairs from\n",
|
||||
"scanned documents or images.\n",
|
||||
"\n",
|
||||
@ -21,7 +21,7 @@
|
||||
"\n",
|
||||
"Document Intelligence supports PDF, JPEG, PNG, BMP, or TIFF.\n",
|
||||
"\n",
|
||||
"Further documentation is available at https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/?view=doc-intel-3.1.0.\n"
|
||||
"Further documentation is available at https://aka.ms/doc-intelligence.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -30,7 +30,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install langchain azure-ai-formrecognizer -q"
|
||||
"%pip install langchain langchain-community azure-ai-documentintelligence -q"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -46,23 +46,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The first example uses a local file which will be sent to Azure Document Intelligence.\n",
|
||||
"\n",
|
||||
"First, an instance of a DocumentAnalysisClient is created with endpoint and key for the Azure service. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azure.ai.formrecognizer import DocumentAnalysisClient\n",
|
||||
"from azure.core.credentials import AzureKeyCredential\n",
|
||||
"\n",
|
||||
"document_analysis_client = DocumentAnalysisClient(\n",
|
||||
" endpoint=\"<service_endpoint>\", credential=AzureKeyCredential(\"<service_key>\")\n",
|
||||
")"
|
||||
"The first example uses a local file which will be sent to Azure AI Document Intelligence."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -75,15 +59,18 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders.pdf import DocumentIntelligenceLoader\n",
|
||||
"from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader\n",
|
||||
"\n",
|
||||
"loader = DocumentIntelligenceLoader(\n",
|
||||
" \"<Local_filename>\", client=document_analysis_client, model=\"<model_name>\"\n",
|
||||
") # e.g. prebuilt-document\n",
|
||||
"file_path = \"<filepath>\"\n",
|
||||
"endpoint = \"<endpoint>\"\n",
|
||||
"key = \"<key>\"\n",
|
||||
"loader = AzureAIDocumentIntelligenceLoader(\n",
|
||||
" api_endpoint=endpoint, api_key=key, file_path=file_path, api_model=\"prebuilt-layout\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"documents = loader.load()"
|
||||
]
|
||||
@ -93,25 +80,45 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The output contains each page of the source document as a LangChain document: "
|
||||
"The default output contains one LangChain document with markdown format content: "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='...', metadata={'source': '...', 'page': 1})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"documents"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example 2\n",
|
||||
"The input file can also be URL path."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"url_path = \"<url>\"\n",
|
||||
"loader = AzureAIDocumentIntelligenceLoader(\n",
|
||||
" api_endpoint=endpoint, api_key=key, url_path=url_path, api_model=\"prebuilt-layout\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"documents = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"documents"
|
||||
]
|
||||
@ -124,8 +131,16 @@
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"version": "3.9.5"
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.10"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
@ -77,6 +77,9 @@ from langchain_community.document_loaders.dataframe import DataFrameLoader
|
||||
from langchain_community.document_loaders.diffbot import DiffbotLoader
|
||||
from langchain_community.document_loaders.directory import DirectoryLoader
|
||||
from langchain_community.document_loaders.discord import DiscordChatLoader
|
||||
from langchain_community.document_loaders.doc_intelligence import (
|
||||
AzureAIDocumentIntelligenceLoader,
|
||||
)
|
||||
from langchain_community.document_loaders.docugami import DocugamiLoader
|
||||
from langchain_community.document_loaders.docusaurus import DocusaurusLoader
|
||||
from langchain_community.document_loaders.dropbox import DropboxLoader
|
||||
@ -247,6 +250,7 @@ __all__ = [
|
||||
"AssemblyAIAudioTranscriptLoader",
|
||||
"AsyncHtmlLoader",
|
||||
"AzureAIDataLoader",
|
||||
"AzureAIDocumentIntelligenceLoader",
|
||||
"AzureBlobStorageContainerLoader",
|
||||
"AzureBlobStorageFileLoader",
|
||||
"BSHTMLLoader",
|
||||
|
@ -0,0 +1,89 @@
|
||||
from typing import Iterator, List, Optional
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.document_loaders.base import BaseLoader
|
||||
from langchain_community.document_loaders.blob_loaders import Blob
|
||||
from langchain_community.document_loaders.parsers import (
|
||||
AzureAIDocumentIntelligenceParser,
|
||||
)
|
||||
|
||||
|
||||
class AzureAIDocumentIntelligenceLoader(BaseLoader):
|
||||
"""Loads a PDF with Azure Document Intelligence"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_endpoint: str,
|
||||
api_key: str,
|
||||
file_path: Optional[str] = None,
|
||||
url_path: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
api_model: str = "prebuilt-layout",
|
||||
mode: str = "markdown",
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the object for file processing with Azure Document Intelligence
|
||||
(formerly Form Recognizer).
|
||||
|
||||
This constructor initializes a AzureAIDocumentIntelligenceParser object to be
|
||||
used for parsing files using the Azure Document Intelligence API. The load
|
||||
method generates Documents whose content representations are determined by the
|
||||
mode parameter.
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
api_endpoint: str
|
||||
The API endpoint to use for DocumentIntelligenceClient construction.
|
||||
api_key: str
|
||||
The API key to use for DocumentIntelligenceClient construction.
|
||||
file_path : Optional[str]
|
||||
The path to the file that needs to be loaded.
|
||||
Either file_path or url_path must be specified.
|
||||
url_path : Optional[str]
|
||||
The URL to the file that needs to be loaded.
|
||||
Either file_path or url_path must be specified.
|
||||
api_version: Optional[str]
|
||||
The API version for DocumentIntelligenceClient. Setting None to use
|
||||
the default value from SDK.
|
||||
api_model: str
|
||||
The model name or ID to be used for form recognition in Azure.
|
||||
|
||||
Examples:
|
||||
---------
|
||||
>>> obj = AzureAIDocumentIntelligenceLoader(
|
||||
... file_path="path/to/file",
|
||||
... api_endpoint="https://endpoint.azure.com",
|
||||
... api_key="APIKEY",
|
||||
... api_version="2023-10-31-preview",
|
||||
... model="prebuilt-document"
|
||||
... )
|
||||
"""
|
||||
|
||||
assert (
|
||||
file_path is not None or url_path is not None
|
||||
), "file_path or url_path must be provided"
|
||||
self.file_path = file_path
|
||||
self.url_path = url_path
|
||||
|
||||
self.parser = AzureAIDocumentIntelligenceParser(
|
||||
api_endpoint=api_endpoint,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
api_model=api_model,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
def load(self) -> List[Document]:
|
||||
"""Load given path as pages."""
|
||||
return list(self.lazy_load())
|
||||
|
||||
def lazy_load(
|
||||
self,
|
||||
) -> Iterator[Document]:
|
||||
"""Lazy load given path as pages."""
|
||||
if self.file_path is not None:
|
||||
blob = Blob.from_path(self.file_path)
|
||||
yield from self.parser.parse(blob)
|
||||
else:
|
||||
yield from self.parser.parse_url(self.url_path)
|
@ -1,4 +1,7 @@
|
||||
from langchain_community.document_loaders.parsers.audio import OpenAIWhisperParser
|
||||
from langchain_community.document_loaders.parsers.doc_intelligence import (
|
||||
AzureAIDocumentIntelligenceParser,
|
||||
)
|
||||
from langchain_community.document_loaders.parsers.docai import DocAIParser
|
||||
from langchain_community.document_loaders.parsers.grobid import GrobidParser
|
||||
from langchain_community.document_loaders.parsers.html import BS4HTMLParser
|
||||
@ -12,6 +15,7 @@ from langchain_community.document_loaders.parsers.pdf import (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"AzureAIDocumentIntelligenceParser",
|
||||
"BS4HTMLParser",
|
||||
"DocAIParser",
|
||||
"GrobidParser",
|
||||
|
@ -0,0 +1,122 @@
|
||||
from typing import Any, Iterator, Optional
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.document_loaders.base import BaseBlobParser
|
||||
from langchain_community.document_loaders.blob_loaders import Blob
|
||||
|
||||
|
||||
class AzureAIDocumentIntelligenceParser(BaseBlobParser):
|
||||
"""Loads a PDF with Azure Document Intelligence
|
||||
(formerly Forms Recognizer)."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_endpoint: str,
|
||||
api_key: str,
|
||||
api_version: Optional[str] = None,
|
||||
api_model: str = "prebuilt-layout",
|
||||
mode: str = "markdown",
|
||||
):
|
||||
from azure.ai.documentintelligence import DocumentIntelligenceClient
|
||||
from azure.core.credentials import AzureKeyCredential
|
||||
|
||||
kwargs = {}
|
||||
if api_version is not None:
|
||||
kwargs["api_version"] = api_version
|
||||
self.client = DocumentIntelligenceClient(
|
||||
endpoint=api_endpoint,
|
||||
credential=AzureKeyCredential(api_key),
|
||||
headers={"x-ms-useragent": "langchain-parser/1.0.0"},
|
||||
**kwargs,
|
||||
)
|
||||
self.api_model = api_model
|
||||
self.mode = mode
|
||||
assert self.mode in ["single", "page", "object", "markdown"]
|
||||
|
||||
def _generate_docs_page(self, result: Any) -> Iterator[Document]:
|
||||
for p in result.pages:
|
||||
content = " ".join([line.content for line in p.lines])
|
||||
|
||||
d = Document(
|
||||
page_content=content,
|
||||
metadata={
|
||||
"page": p.page_number,
|
||||
},
|
||||
)
|
||||
yield d
|
||||
|
||||
def _generate_docs_single(self, result: Any) -> Iterator[Document]:
|
||||
yield Document(page_content=result.content, metadata={})
|
||||
|
||||
def _generate_docs_object(self, result: Any) -> Iterator[Document]:
|
||||
# record relationship between page id and span offset
|
||||
page_offset = []
|
||||
for page in result.pages:
|
||||
# assume that spans only contain 1 element, to double check
|
||||
page_offset.append(page.spans[0]["offset"])
|
||||
|
||||
# paragraph
|
||||
# warning: paragraph content is overlapping with table content
|
||||
for para in result.paragraphs:
|
||||
yield Document(
|
||||
page_content=para.content,
|
||||
metadata={
|
||||
"role": para.role,
|
||||
"page": para.bounding_regions[0].page_number,
|
||||
"bounding_box": para.bounding_regions[0].polygon,
|
||||
"type": "paragraph",
|
||||
},
|
||||
)
|
||||
|
||||
# table
|
||||
for table in result.tables:
|
||||
yield Document(
|
||||
page_content=table.cells, # json object
|
||||
metadata={
|
||||
"footnote": table.footnotes,
|
||||
"caption": table.caption,
|
||||
"page": para.bounding_regions[0].page_number,
|
||||
"bounding_box": para.bounding_regions[0].polygon,
|
||||
"row_count": table.row_count,
|
||||
"column_count": table.column_count,
|
||||
"type": "table",
|
||||
},
|
||||
)
|
||||
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""Lazily parse the blob."""
|
||||
|
||||
with blob.as_bytes_io() as file_obj:
|
||||
poller = self.client.begin_analyze_document(
|
||||
self.api_model,
|
||||
file_obj,
|
||||
content_type="application/octet-stream",
|
||||
output_content_format="markdown" if self.mode == "markdown" else "text",
|
||||
)
|
||||
result = poller.result()
|
||||
|
||||
if self.mode in ["single", "markdown"]:
|
||||
yield from self._generate_docs_single(result)
|
||||
elif self.mode == ["page"]:
|
||||
yield from self._generate_docs_page(result)
|
||||
else:
|
||||
yield from self._generate_docs_object(result)
|
||||
|
||||
def parse_url(self, url: str) -> Iterator[Document]:
|
||||
from azure.ai.documentintelligence.models import AnalyzeDocumentRequest
|
||||
|
||||
poller = self.client.begin_analyze_document(
|
||||
self.api_model,
|
||||
AnalyzeDocumentRequest(url_source=url),
|
||||
# content_type="application/octet-stream",
|
||||
output_content_format="markdown" if self.mode == "markdown" else "text",
|
||||
)
|
||||
result = poller.result()
|
||||
|
||||
if self.mode in ["single", "markdown"]:
|
||||
yield from self._generate_docs_single(result)
|
||||
elif self.mode == ["page"]:
|
||||
yield from self._generate_docs_page(result)
|
||||
else:
|
||||
yield from self._generate_docs_object(result)
|
@ -542,9 +542,17 @@ class AmazonTextractPDFParser(BaseBlobParser):
|
||||
|
||||
class DocumentIntelligenceParser(BaseBlobParser):
|
||||
"""Loads a PDF with Azure Document Intelligence
|
||||
(formerly Forms Recognizer) and chunks at character level."""
|
||||
(formerly Form Recognizer) and chunks at character level."""
|
||||
|
||||
def __init__(self, client: Any, model: str):
|
||||
warnings.warn(
|
||||
"langchain.document_loaders.parsers.pdf.DocumentIntelligenceParser"
|
||||
"and langchain.document_loaders.pdf.DocumentIntelligenceLoader"
|
||||
" are deprecated. Please upgrade to "
|
||||
"langchain.document_loaders.DocumentIntelligenceLoader "
|
||||
"for any file parsing purpose using Azure Document Intelligence "
|
||||
"service."
|
||||
)
|
||||
self.client = client
|
||||
self.model = model
|
||||
|
||||
|
55
libs/community/poetry.lock
generated
55
libs/community/poetry.lock
generated
@ -531,6 +531,41 @@ docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-
|
||||
tests = ["attrs[tests-no-zope]", "zope-interface"]
|
||||
tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"]
|
||||
|
||||
[[package]]
|
||||
name = "azure-ai-documentintelligence"
|
||||
version = "1.0.0b1"
|
||||
description = "Microsoft Azure AI Document Intelligence Client Library for Python"
|
||||
optional = true
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "azure-ai-documentintelligence-1.0.0b1.tar.gz", hash = "sha256:b0acedc50489cc63aac44190e32a3a04e5c50c98a1e4ed39bcb910f51fbf5207"},
|
||||
{file = "azure_ai_documentintelligence-1.0.0b1-py3-none-any.whl", hash = "sha256:db81ea7c8c30e070b5b424a45f9c43c4111159ab6b3c2994c1346b3d3b01f682"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
azure-core = ">=1.28.0,<2.0.0"
|
||||
isodate = ">=0.6.1,<1.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "azure-core"
|
||||
version = "1.29.6"
|
||||
description = "Microsoft Azure Core Library for Python"
|
||||
optional = true
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "azure-core-1.29.6.tar.gz", hash = "sha256:13b485252ecd9384ae624894fe51cfa6220966207264c360beada239f88b738a"},
|
||||
{file = "azure_core-1.29.6-py3-none-any.whl", hash = "sha256:604a005bce6a49ba661bb7b2be84a9b169047e52fcfcd0a4e4770affab4178f7"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
anyio = ">=3.0,<5.0"
|
||||
requests = ">=2.21.0"
|
||||
six = ">=1.11.0"
|
||||
typing-extensions = ">=4.6.0"
|
||||
|
||||
[package.extras]
|
||||
aio = ["aiohttp (>=3.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "babel"
|
||||
version = "2.13.1"
|
||||
@ -3167,6 +3202,20 @@ widgetsnbextension = ">=4.0.9,<4.1.0"
|
||||
[package.extras]
|
||||
test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"]
|
||||
|
||||
[[package]]
|
||||
name = "isodate"
|
||||
version = "0.6.1"
|
||||
description = "An ISO 8601 date/time/duration parser and formatter"
|
||||
optional = true
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "isodate-0.6.1-py2.py3-none-any.whl", hash = "sha256:0751eece944162659049d35f4f549ed815792b38793f07cf73381c1c87cbed96"},
|
||||
{file = "isodate-0.6.1.tar.gz", hash = "sha256:48c5881de7e8b0a0d648cb024c8062dc84e7b840ed81e864c7614fd3c127bde9"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
six = "*"
|
||||
|
||||
[[package]]
|
||||
name = "isoduration"
|
||||
version = "20.11.0"
|
||||
@ -3821,7 +3870,7 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-core"
|
||||
version = "0.1.1"
|
||||
version = "0.1.3"
|
||||
description = "Building applications with LLMs through composability"
|
||||
optional = false
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
@ -9062,9 +9111,9 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
|
||||
|
||||
[extras]
|
||||
cli = ["typer"]
|
||||
extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "cohere", "dashvector", "databricks-vectorsearch", "datasets", "dgml-utils", "esprima", "faiss-cpu", "feedparser", "fireworks-ai", "geopandas", "gitpython", "google-cloud-documentai", "gql", "gradientai", "hologres-vector", "html2text", "javelin-sdk", "jinja2", "jq", "jsonschema", "lxml", "markdownify", "motor", "msal", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "openai", "openapi-pydantic", "oracle-ads", "pandas", "pdfminer-six", "pgvector", "praw", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "timescale-vector", "tqdm", "upstash-redis", "xata", "xmltodict"]
|
||||
extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "azure-ai-documentintelligence", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "cohere", "dashvector", "databricks-vectorsearch", "datasets", "dgml-utils", "esprima", "faiss-cpu", "feedparser", "fireworks-ai", "geopandas", "gitpython", "google-cloud-documentai", "gql", "gradientai", "hologres-vector", "html2text", "javelin-sdk", "jinja2", "jq", "jsonschema", "lxml", "markdownify", "motor", "msal", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "openai", "openapi-pydantic", "oracle-ads", "pandas", "pdfminer-six", "pgvector", "praw", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "timescale-vector", "tqdm", "upstash-redis", "xata", "xmltodict"]
|
||||
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
content-hash = "00b69a8316c2748362f1f135e229950230be0401e7c307c0ce27a8309f947816"
|
||||
content-hash = "9094149705a405904c268b09c7dddae98fa466f67b2606defb5c6e3661b36602"
|
||||
|
@ -84,6 +84,7 @@ msal = {version = "^1.25.0", optional = true}
|
||||
databricks-vectorsearch = {version = "^0.21", optional = true}
|
||||
dgml-utils = {version = "^0.3.0", optional = true}
|
||||
datasets = {version = "^2.15.0", optional = true}
|
||||
azure-ai-documentintelligence = {version = "^1.0.0b1", optional = true}
|
||||
oracle-ads = {version = "^2.9.1", optional = true}
|
||||
|
||||
[tool.poetry.group.test]
|
||||
@ -244,6 +245,7 @@ extended_testing = [
|
||||
"databricks-vectorsearch",
|
||||
"dgml-utils",
|
||||
"cohere",
|
||||
"azure-ai-documentintelligence",
|
||||
"oracle-ads",
|
||||
]
|
||||
|
||||
|
@ -0,0 +1,27 @@
|
||||
"""Tests for the Google Cloud DocAI parser."""
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain_community.document_loaders.parsers import (
|
||||
AzureAIDocumentIntelligenceParser,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.requires("azure", "azure.ai", "azure.ai.documentintelligence")
|
||||
@patch("azure.ai.documentintelligence.DocumentIntelligenceClient")
|
||||
@patch("azure.core.credentials.AzureKeyCredential")
|
||||
def test_doc_intelligence(mock_credential: MagicMock, mock_client: MagicMock) -> None:
|
||||
endpoint = "endpoint"
|
||||
key = "key"
|
||||
|
||||
parser = AzureAIDocumentIntelligenceParser(api_endpoint=endpoint, api_key=key)
|
||||
mock_credential.assert_called_once_with(key)
|
||||
mock_client.assert_called_once_with(
|
||||
endpoint=endpoint,
|
||||
credential=mock_credential(),
|
||||
headers={"x-ms-useragent": "langchain-parser/1.0.0"},
|
||||
)
|
||||
assert parser.client == mock_client()
|
||||
assert parser.api_model == "prebuilt-layout"
|
||||
assert parser.mode == "markdown"
|
@ -4,6 +4,7 @@ from langchain_community.document_loaders.parsers import __all__
|
||||
def test_parsers_public_api_correct() -> None:
|
||||
"""Test public API of parsers for breaking changes."""
|
||||
assert set(__all__) == {
|
||||
"AzureAIDocumentIntelligenceParser",
|
||||
"BS4HTMLParser",
|
||||
"DocAIParser",
|
||||
"GrobidParser",
|
||||
|
@ -23,6 +23,7 @@ EXPECTED_ALL = [
|
||||
"AssemblyAIAudioTranscriptLoader",
|
||||
"AsyncHtmlLoader",
|
||||
"AzureAIDataLoader",
|
||||
"AzureAIDocumentIntelligenceLoader",
|
||||
"AzureBlobStorageContainerLoader",
|
||||
"AzureBlobStorageFileLoader",
|
||||
"BSHTMLLoader",
|
||||
|
Loading…
Reference in New Issue
Block a user