docstrings for embeddings (#7973)

Added/updated docstrings for the `embeddings`

@baskaryan
This commit is contained in:
Leonid Ganeline 2023-07-20 06:26:44 -07:00 committed by GitHub
parent 0613ed5b95
commit 24b26a922a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
30 changed files with 54 additions and 66 deletions

View File

@ -7,8 +7,8 @@ from langchain.utils import get_from_dict_or_env
class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings): class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
""" """Aleph Alpha's asymmetric semantic embedding.
Wrapper for Aleph Alpha's Asymmetric Embeddings
AA provides you with an endpoint to embed a document and a query. AA provides you with an endpoint to embed a document and a query.
The models were optimized to make the embeddings of documents and The models were optimized to make the embeddings of documents and
the query for a document as similar as possible. the query for a document as similar as possible.
@ -30,7 +30,7 @@ class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
""" """
client: Any #: :meta private: client: Any #: :meta private:
"""Aleph Alpha client."""
model: Optional[str] = "luminous-base" model: Optional[str] = "luminous-base"
"""Model name to use.""" """Model name to use."""
hosting: Optional[str] = "https://api.aleph-alpha.com" hosting: Optional[str] = "https://api.aleph-alpha.com"

View File

@ -1,4 +1,3 @@
"""Interface for embedding models."""
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List from typing import List
@ -15,9 +14,9 @@ class Embeddings(ABC):
"""Embed query text.""" """Embed query text."""
async def aembed_documents(self, texts: List[str]) -> List[List[float]]: async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs.""" """Asynchronous Embed search docs."""
raise NotImplementedError raise NotImplementedError
async def aembed_query(self, text: str) -> List[float]: async def aembed_query(self, text: str) -> List[float]:
"""Embed query text.""" """Asynchronous Embed query text."""
raise NotImplementedError raise NotImplementedError

View File

@ -8,7 +8,7 @@ from langchain.embeddings.base import Embeddings
class BedrockEmbeddings(BaseModel, Embeddings): class BedrockEmbeddings(BaseModel, Embeddings):
"""Embeddings provider to invoke Bedrock embedding models. """Bedrock embedding models.
To authenticate, the AWS client uses the following methods to To authenticate, the AWS client uses the following methods to
automatically load credentials: automatically load credentials:
@ -39,7 +39,7 @@ class BedrockEmbeddings(BaseModel, Embeddings):
""" """
client: Any #: :meta private: client: Any #: :meta private:
"""Bedrock client."""
region_name: Optional[str] = None region_name: Optional[str] = None
"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable
or region specified in ~/.aws/config in case it is not provided here. or region specified in ~/.aws/config in case it is not provided here.

View File

@ -1,4 +1,3 @@
"""Wrapper around Clarifai embedding models."""
import logging import logging
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
@ -11,7 +10,7 @@ logger = logging.getLogger(__name__)
class ClarifaiEmbeddings(BaseModel, Embeddings): class ClarifaiEmbeddings(BaseModel, Embeddings):
"""Wrapper around Clarifai embedding models. """Clarifai embedding models.
To use, you should have the ``clarifai`` python package installed, and the To use, you should have the ``clarifai`` python package installed, and the
environment variable ``CLARIFAI_PAT`` set with your personal access token or pass it environment variable ``CLARIFAI_PAT`` set with your personal access token or pass it
@ -27,22 +26,19 @@ class ClarifaiEmbeddings(BaseModel, Embeddings):
""" """
stub: Any #: :meta private: stub: Any #: :meta private:
"""Clarifai stub."""
userDataObject: Any userDataObject: Any
"""Clarifai user data object."""
model_id: Optional[str] = None model_id: Optional[str] = None
"""Model id to use.""" """Model id to use."""
model_version_id: Optional[str] = None model_version_id: Optional[str] = None
"""Model version id to use.""" """Model version id to use."""
app_id: Optional[str] = None app_id: Optional[str] = None
"""Clarifai application id to use.""" """Clarifai application id to use."""
user_id: Optional[str] = None user_id: Optional[str] = None
"""Clarifai user id to use.""" """Clarifai user id to use."""
pat: Optional[str] = None pat: Optional[str] = None
"""Clarifai personal access token to use."""
api_base: str = "https://api.clarifai.com" api_base: str = "https://api.clarifai.com"
class Config: class Config:

View File

@ -1,4 +1,3 @@
"""Wrapper around Cohere embedding models."""
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator from pydantic import BaseModel, Extra, root_validator
@ -8,7 +7,7 @@ from langchain.utils import get_from_dict_or_env
class CohereEmbeddings(BaseModel, Embeddings): class CohereEmbeddings(BaseModel, Embeddings):
"""Wrapper around Cohere embedding models. """Cohere embedding models.
To use, you should have the ``cohere`` python package installed, and the To use, you should have the ``cohere`` python package installed, and the
environment variable ``COHERE_API_KEY`` set with your API key or pass it environment variable ``COHERE_API_KEY`` set with your API key or pass it
@ -24,6 +23,7 @@ class CohereEmbeddings(BaseModel, Embeddings):
""" """
client: Any #: :meta private: client: Any #: :meta private:
"""Cohere client."""
model: str = "embed-english-v2.0" model: str = "embed-english-v2.0"
"""Model name to use.""" """Model name to use."""

View File

@ -1,4 +1,3 @@
"""Wrapper around DashScope embedding models."""
from __future__ import annotations from __future__ import annotations
import logging import logging
@ -65,7 +64,7 @@ def embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) -> Any:
class DashScopeEmbeddings(BaseModel, Embeddings): class DashScopeEmbeddings(BaseModel, Embeddings):
"""Wrapper around DashScope embedding models. """DashScope embedding models.
To use, you should have the ``dashscope`` python package installed, and the To use, you should have the ``dashscope`` python package installed, and the
environment variable ``DASHSCOPE_API_KEY`` set with your API key or pass it environment variable ``DASHSCOPE_API_KEY`` set with your API key or pass it
@ -93,10 +92,11 @@ class DashScopeEmbeddings(BaseModel, Embeddings):
""" """
client: Any #: :meta private: client: Any #: :meta private:
"""The DashScope client."""
model: str = "text-embedding-v1" model: str = "text-embedding-v1"
dashscope_api_key: Optional[str] = None dashscope_api_key: Optional[str] = None
"""Maximum number of retries to make when generating."""
max_retries: int = 5 max_retries: int = 5
"""Maximum number of retries to make when generating."""
class Config: class Config:
"""Configuration for this pydantic object.""" """Configuration for this pydantic object."""

View File

@ -10,7 +10,7 @@ DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32"
class DeepInfraEmbeddings(BaseModel, Embeddings): class DeepInfraEmbeddings(BaseModel, Embeddings):
"""Wrapper around Deep Infra's embedding inference service. """Deep Infra's embedding inference service.
To use, you should have the To use, you should have the
environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass

View File

@ -12,8 +12,7 @@ from langchain.embeddings.base import Embeddings
class ElasticsearchEmbeddings(Embeddings): class ElasticsearchEmbeddings(Embeddings):
""" """Elasticsearch embedding models.
Wrapper around Elasticsearch embedding models.
This class provides an interface to generate embeddings using a model deployed This class provides an interface to generate embeddings using a model deployed
in an Elasticsearch cluster. It requires an Elasticsearch connection object in an Elasticsearch cluster. It requires an Elasticsearch connection object

View File

@ -1,4 +1,3 @@
"""Wrapper around embaas embeddings API."""
from typing import Any, Dict, List, Mapping, Optional from typing import Any, Dict, List, Mapping, Optional
import requests import requests
@ -22,7 +21,7 @@ class EmbaasEmbeddingsPayload(TypedDict):
class EmbaasEmbeddings(BaseModel, Embeddings): class EmbaasEmbeddings(BaseModel, Embeddings):
"""Wrapper around embaas's embedding service. """Embaas's embedding service.
To use, you should have the To use, you should have the
environment variable ``EMBAAS_API_KEY`` set with your API key, or pass environment variable ``EMBAAS_API_KEY`` set with your API key, or pass

View File

@ -7,7 +7,10 @@ from langchain.embeddings.base import Embeddings
class FakeEmbeddings(Embeddings, BaseModel): class FakeEmbeddings(Embeddings, BaseModel):
"""Fake embedding model."""
size: int size: int
"""The size of the embedding vector."""
def _get_embedding(self) -> List[float]: def _get_embedding(self) -> List[float]:
return list(np.random.normal(size=self.size)) return list(np.random.normal(size=self.size))

View File

@ -1,4 +1,3 @@
"""Wrapper around Google's PaLM Embeddings APIs."""
from __future__ import annotations from __future__ import annotations
import logging import logging
@ -55,6 +54,8 @@ def embed_with_retry(
class GooglePalmEmbeddings(BaseModel, Embeddings): class GooglePalmEmbeddings(BaseModel, Embeddings):
"""Google's PaLM Embeddings APIs."""
client: Any client: Any
google_api_key: Optional[str] google_api_key: Optional[str]
model_name: str = "models/embedding-gecko-001" model_name: str = "models/embedding-gecko-001"

View File

@ -1,4 +1,3 @@
"""Wrapper around GPT4All embedding models."""
from typing import Any, Dict, List from typing import Any, Dict, List
from pydantic import BaseModel, root_validator from pydantic import BaseModel, root_validator
@ -7,7 +6,7 @@ from langchain.embeddings.base import Embeddings
class GPT4AllEmbeddings(BaseModel, Embeddings): class GPT4AllEmbeddings(BaseModel, Embeddings):
"""Wrapper around GPT4All embedding models. """GPT4All embedding models.
To use, you should have the gpt4all python package installed To use, you should have the gpt4all python package installed
@ -30,7 +29,7 @@ class GPT4AllEmbeddings(BaseModel, Embeddings):
values["client"] = Embed4All() values["client"] = Embed4All()
except ImportError: except ImportError:
raise ModuleNotFoundError( raise ImportError(
"Could not import gpt4all library. " "Could not import gpt4all library. "
"Please install the gpt4all library to " "Please install the gpt4all library to "
"use this embedding model: pip install gpt4all" "use this embedding model: pip install gpt4all"

View File

@ -1,4 +1,3 @@
"""Wrapper around HuggingFace embedding models."""
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, Field from pydantic import BaseModel, Extra, Field
@ -14,7 +13,7 @@ DEFAULT_QUERY_INSTRUCTION = (
class HuggingFaceEmbeddings(BaseModel, Embeddings): class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models. """HuggingFace sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed. To use, you should have the ``sentence_transformers`` python package installed.

View File

@ -1,4 +1,3 @@
"""Wrapper around HuggingFace Hub embedding models."""
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator from pydantic import BaseModel, Extra, root_validator
@ -11,7 +10,7 @@ VALID_TASKS = ("feature-extraction",)
class HuggingFaceHubEmbeddings(BaseModel, Embeddings): class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around HuggingFaceHub embedding models. """HuggingFaceHub embedding models.
To use, you should have the ``huggingface_hub`` python package installed, and the To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
@ -71,7 +70,7 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
) )
values["client"] = client values["client"] = client
except ImportError: except ImportError:
raise ValueError( raise ImportError(
"Could not import huggingface_hub python package. " "Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`." "Please install it with `pip install huggingface_hub`."
) )

View File

@ -1,5 +1,3 @@
"""Wrapper around Jina embedding models."""
import os import os
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
@ -11,6 +9,8 @@ from langchain.utils import get_from_dict_or_env
class JinaEmbeddings(BaseModel, Embeddings): class JinaEmbeddings(BaseModel, Embeddings):
"""Jina embedding models."""
client: Any #: :meta private: client: Any #: :meta private:
model_name: str = "ViT-B-32::openai" model_name: str = "ViT-B-32::openai"

View File

@ -1,4 +1,3 @@
"""Wrapper around llama.cpp embedding models."""
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, Field, root_validator from pydantic import BaseModel, Extra, Field, root_validator
@ -7,7 +6,7 @@ from langchain.embeddings.base import Embeddings
class LlamaCppEmbeddings(BaseModel, Embeddings): class LlamaCppEmbeddings(BaseModel, Embeddings):
"""Wrapper around llama.cpp embedding models. """llama.cpp embedding models.
To use, you should have the llama-cpp-python library installed, and provide the To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor. path to the Llama model as a named parameter to the constructor.

View File

@ -1,4 +1,3 @@
"""Wrapper around MiniMax APIs."""
from __future__ import annotations from __future__ import annotations
import logging import logging
@ -47,7 +46,7 @@ def embed_with_retry(embeddings: MiniMaxEmbeddings, *args: Any, **kwargs: Any) -
class MiniMaxEmbeddings(BaseModel, Embeddings): class MiniMaxEmbeddings(BaseModel, Embeddings):
"""Wrapper around MiniMax's embedding inference service. """MiniMax's embedding service.
To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and
``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to ``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to

View File

@ -13,8 +13,12 @@ def _chunk(texts: List[str], size: int) -> Iterator[List[str]]:
class MlflowAIGatewayEmbeddings(Embeddings, BaseModel): class MlflowAIGatewayEmbeddings(Embeddings, BaseModel):
"""MLflow AI Gateway Embeddings APIs."""
route: str route: str
"""The route to use for the MLflow AI Gateway API."""
gateway_uri: Optional[str] = None gateway_uri: Optional[str] = None
"""The URI for the MLflow AI Gateway API."""
def __init__(self, **kwargs: Any): def __init__(self, **kwargs: Any):
try: try:

View File

@ -1,4 +1,3 @@
"""Wrapper around ModelScopeHub embedding models."""
from typing import Any, List from typing import Any, List
from pydantic import BaseModel, Extra from pydantic import BaseModel, Extra
@ -7,7 +6,7 @@ from langchain.embeddings.base import Embeddings
class ModelScopeEmbeddings(BaseModel, Embeddings): class ModelScopeEmbeddings(BaseModel, Embeddings):
"""Wrapper around modelscope_hub embedding models. """ModelScopeHub embedding models.
To use, you should have the ``modelscope`` python package installed. To use, you should have the ``modelscope`` python package installed.

View File

@ -1,4 +1,3 @@
"""Wrapper around MosaicML APIs."""
from typing import Any, Dict, List, Mapping, Optional, Tuple from typing import Any, Dict, List, Mapping, Optional, Tuple
import requests import requests
@ -9,7 +8,7 @@ from langchain.utils import get_from_dict_or_env
class MosaicMLInstructorEmbeddings(BaseModel, Embeddings): class MosaicMLInstructorEmbeddings(BaseModel, Embeddings):
"""Wrapper around MosaicML's embedding inference service. """MosaicML embedding service.
To use, you should have the To use, you should have the
environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass

View File

@ -1,4 +1,3 @@
"""Wrapper around NLP Cloud embedding models."""
from typing import Any, Dict, List from typing import Any, Dict, List
from pydantic import BaseModel, root_validator from pydantic import BaseModel, root_validator
@ -8,7 +7,7 @@ from langchain.utils import get_from_dict_or_env
class NLPCloudEmbeddings(BaseModel, Embeddings): class NLPCloudEmbeddings(BaseModel, Embeddings):
"""Wrapper around NLP Cloud embedding models. """NLP Cloud embedding models.
To use, you should have the nlpcloud python package installed To use, you should have the nlpcloud python package installed

View File

@ -1,5 +1,3 @@
"""Module providing a wrapper around OctoAI Compute Service embedding models."""
from typing import Any, Dict, List, Mapping, Optional from typing import Any, Dict, List, Mapping, Optional
from pydantic import BaseModel, Extra, Field, root_validator from pydantic import BaseModel, Extra, Field, root_validator
@ -12,7 +10,7 @@ DEFAULT_QUERY_INSTRUCTION = "Represent the question for retrieving similar docum
class OctoAIEmbeddings(BaseModel, Embeddings): class OctoAIEmbeddings(BaseModel, Embeddings):
"""Wrapper around OctoAI Compute Service embedding models. """OctoAI Compute Service embedding models.
The environment variable ``OCTOAI_API_TOKEN`` should be set The environment variable ``OCTOAI_API_TOKEN`` should be set
with your API token, or it can be passed with your API token, or it can be passed

View File

@ -1,4 +1,3 @@
"""Wrapper around OpenAI embedding models."""
from __future__ import annotations from __future__ import annotations
import logging import logging
@ -120,7 +119,7 @@ async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) ->
class OpenAIEmbeddings(BaseModel, Embeddings): class OpenAIEmbeddings(BaseModel, Embeddings):
"""Wrapper around OpenAI embedding models. """OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it environment variable ``OPENAI_API_KEY`` set with your API key or pass it
@ -171,6 +170,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
# to support explicit proxy for OpenAI # to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None openai_proxy: Optional[str] = None
embedding_ctx_length: int = 8191 embedding_ctx_length: int = 8191
"""The maximum number of tokens to embed at once."""
openai_api_key: Optional[str] = None openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None openai_organization: Optional[str] = None
allowed_special: Union[Literal["all"], Set[str]] = set() allowed_special: Union[Literal["all"], Set[str]] = set()

View File

@ -1,4 +1,3 @@
"""Wrapper around Sagemaker InvokeEndpoint API."""
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator from pydantic import BaseModel, Extra, root_validator
@ -12,7 +11,7 @@ class EmbeddingsContentHandler(ContentHandlerBase[List[str], List[List[float]]])
class SagemakerEndpointEmbeddings(BaseModel, Embeddings): class SagemakerEndpointEmbeddings(BaseModel, Embeddings):
"""Wrapper around custom Sagemaker Inference Endpoints. """Custom Sagemaker Inference Endpoints.
To use, you must supply the endpoint name from your deployed To use, you must supply the endpoint name from your deployed
Sagemaker model & the region where it is deployed. Sagemaker model & the region where it is deployed.
@ -133,7 +132,7 @@ class SagemakerEndpointEmbeddings(BaseModel, Embeddings):
) from e ) from e
except ImportError: except ImportError:
raise ValueError( raise ImportError(
"Could not import boto3 python package. " "Could not import boto3 python package. "
"Please install it with `pip install boto3`." "Please install it with `pip install boto3`."
) )

View File

@ -1,4 +1,3 @@
"""Running custom embedding models on self-hosted remote hardware."""
from typing import Any, Callable, List from typing import Any, Callable, List
from pydantic import Extra from pydantic import Extra
@ -17,7 +16,7 @@ def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[floa
class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings): class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings):
"""Runs custom embedding models on self-hosted remote hardware. """Custom embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure, Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified and Lambda, as well as servers specified

View File

@ -1,4 +1,3 @@
"""Wrapper around HuggingFace embedding models for self-hosted remote hardware."""
import importlib import importlib
import logging import logging
from typing import Any, Callable, List, Optional from typing import Any, Callable, List, Optional
@ -58,7 +57,7 @@ def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0)
class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings): class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings):
"""Runs sentence_transformers embedding models on self-hosted remote hardware. """HuggingFace embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure, Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified and Lambda, as well as servers specified
@ -101,7 +100,7 @@ class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings):
class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings): class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings):
"""Runs InstructorEmbedding embedding models on self-hosted remote hardware. """HuggingFace InstructEmbedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure, Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified and Lambda, as well as servers specified

View File

@ -1,4 +1,4 @@
"""Wrapper around sentence transformer embedding models.""" """HuggingFace sentence_transformer embedding models."""
from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.embeddings.huggingface import HuggingFaceEmbeddings
SentenceTransformerEmbeddings = HuggingFaceEmbeddings SentenceTransformerEmbeddings = HuggingFaceEmbeddings

View File

@ -7,8 +7,8 @@ from langchain.embeddings.base import Embeddings
class SpacyEmbeddings(BaseModel, Embeddings): class SpacyEmbeddings(BaseModel, Embeddings):
""" """Embeddings by SpaCy models.
SpacyEmbeddings is a class for generating embeddings using the Spacy library.
It only supports the 'en_core_web_sm' model. It only supports the 'en_core_web_sm' model.
Attributes: Attributes:

View File

@ -1,4 +1,3 @@
"""Wrapper around TensorflowHub embedding models."""
from typing import Any, List from typing import Any, List
from pydantic import BaseModel, Extra from pydantic import BaseModel, Extra
@ -9,7 +8,7 @@ DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multili
class TensorflowHubEmbeddings(BaseModel, Embeddings): class TensorflowHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around tensorflow_hub embedding models. """TensorflowHub embedding models.
To use, you should have the ``tensorflow_text`` python package installed. To use, you should have the ``tensorflow_text`` python package installed.

View File

@ -1,4 +1,3 @@
"""Wrapper around Google VertexAI embedding models."""
from typing import Dict, List from typing import Dict, List
from pydantic import root_validator from pydantic import root_validator
@ -9,6 +8,8 @@ from langchain.utilities.vertexai import raise_vertex_import_error
class VertexAIEmbeddings(_VertexAICommon, Embeddings): class VertexAIEmbeddings(_VertexAICommon, Embeddings):
"""Google Cloud VertexAI embedding models."""
model_name: str = "textembedding-gecko" model_name: str = "textembedding-gecko"
@root_validator() @root_validator()