mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-17 23:41:46 +00:00
community[patch]: upgrade to recent version of mypy (#21616)
This PR upgrades community to a recent version of mypy. It inserts type: ignore on all existing failures.
This commit is contained in:
@@ -5,7 +5,7 @@ from langchain_community.embeddings.awa import AwaEmbeddings
|
||||
def test_awa_embedding_documents() -> None:
|
||||
"""Test Awa embeddings for documents."""
|
||||
documents = ["foo bar", "test document"]
|
||||
embedding = AwaEmbeddings()
|
||||
embedding = AwaEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 768
|
||||
@@ -14,6 +14,6 @@ def test_awa_embedding_documents() -> None:
|
||||
def test_awa_embedding_query() -> None:
|
||||
"""Test Awa embeddings for query."""
|
||||
document = "foo bar"
|
||||
embedding = AwaEmbeddings()
|
||||
embedding = AwaEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 768
|
||||
|
@@ -17,7 +17,7 @@ DEPLOYMENT_NAME = os.environ.get(
|
||||
|
||||
|
||||
def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings:
|
||||
return AzureOpenAIEmbeddings(
|
||||
return AzureOpenAIEmbeddings( # type: ignore[call-arg]
|
||||
azure_deployment=DEPLOYMENT_NAME,
|
||||
api_version=OPENAI_API_VERSION,
|
||||
openai_api_base=OPENAI_API_BASE,
|
||||
|
@@ -5,7 +5,7 @@ from langchain_community.embeddings.baichuan import BaichuanTextEmbeddings
|
||||
def test_baichuan_embedding_documents() -> None:
|
||||
"""Test Baichuan Text Embedding for documents."""
|
||||
documents = ["今天天气不错", "今天阳光灿烂"]
|
||||
embedding = BaichuanTextEmbeddings()
|
||||
embedding = BaichuanTextEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2 # type: ignore[arg-type]
|
||||
assert len(output[0]) == 1024 # type: ignore[index]
|
||||
@@ -14,6 +14,6 @@ def test_baichuan_embedding_documents() -> None:
|
||||
def test_baichuan_embedding_query() -> None:
|
||||
"""Test Baichuan Text Embedding for query."""
|
||||
document = "所有的小学生都会学过只因兔同笼问题。"
|
||||
embedding = BaichuanTextEmbeddings()
|
||||
embedding = BaichuanTextEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 1024 # type: ignore[arg-type]
|
||||
|
@@ -5,7 +5,7 @@ from langchain_community.embeddings.cohere import CohereEmbeddings
|
||||
def test_cohere_embedding_documents() -> None:
|
||||
"""Test cohere embeddings."""
|
||||
documents = ["foo bar"]
|
||||
embedding = CohereEmbeddings()
|
||||
embedding = CohereEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 2048
|
||||
@@ -14,6 +14,6 @@ def test_cohere_embedding_documents() -> None:
|
||||
def test_cohere_embedding_query() -> None:
|
||||
"""Test cohere embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = CohereEmbeddings()
|
||||
embedding = CohereEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 2048
|
||||
|
@@ -7,7 +7,7 @@ from langchain_community.embeddings.dashscope import DashScopeEmbeddings
|
||||
def test_dashscope_embedding_documents() -> None:
|
||||
"""Test dashscope embeddings."""
|
||||
documents = ["foo bar"]
|
||||
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
||||
embedding = DashScopeEmbeddings(model="text-embedding-v1") # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 1536
|
||||
@@ -45,7 +45,7 @@ def test_dashscope_embedding_documents_multiple() -> None:
|
||||
"foo23",
|
||||
"foo24",
|
||||
]
|
||||
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
||||
embedding = DashScopeEmbeddings(model="text-embedding-v1") # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 28
|
||||
assert len(output[0]) == 1536
|
||||
@@ -56,7 +56,7 @@ def test_dashscope_embedding_documents_multiple() -> None:
|
||||
def test_dashscope_embedding_query() -> None:
|
||||
"""Test dashscope embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
||||
embedding = DashScopeEmbeddings(model="text-embedding-v1") # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 1536
|
||||
|
||||
@@ -66,7 +66,7 @@ def test_dashscope_embedding_with_empty_string() -> None:
|
||||
import dashscope
|
||||
|
||||
document = ["", "abc"]
|
||||
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
||||
embedding = DashScopeEmbeddings(model="text-embedding-v1") # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(document)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 1536
|
||||
|
@@ -6,7 +6,7 @@ from langchain_community.embeddings.edenai import EdenAiEmbeddings
|
||||
def test_edenai_embedding_documents() -> None:
|
||||
"""Test edenai embeddings with openai."""
|
||||
documents = ["foo bar", "test text"]
|
||||
embedding = EdenAiEmbeddings(provider="openai")
|
||||
embedding = EdenAiEmbeddings(provider="openai") # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 1536
|
||||
@@ -16,6 +16,6 @@ def test_edenai_embedding_documents() -> None:
|
||||
def test_edenai_embedding_query() -> None:
|
||||
"""Test eden ai embeddings with google."""
|
||||
document = "foo bar"
|
||||
embedding = EdenAiEmbeddings(provider="google")
|
||||
embedding = EdenAiEmbeddings(provider="google") # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 768
|
||||
|
@@ -15,10 +15,10 @@ def test_fastembed_embedding_documents(
|
||||
) -> None:
|
||||
"""Test fastembed embeddings for documents."""
|
||||
documents = ["foo bar", "bar foo"]
|
||||
embedding = FastEmbedEmbeddings(
|
||||
embedding = FastEmbedEmbeddings( # type: ignore[call-arg]
|
||||
model_name=model_name,
|
||||
max_length=max_length,
|
||||
doc_embed_type=doc_embed_type,
|
||||
doc_embed_type=doc_embed_type, # type: ignore[arg-type]
|
||||
threads=threads,
|
||||
)
|
||||
output = embedding.embed_documents(documents)
|
||||
@@ -33,7 +33,7 @@ def test_fastembed_embedding_documents(
|
||||
def test_fastembed_embedding_query(model_name: str, max_length: int) -> None:
|
||||
"""Test fastembed embeddings for query."""
|
||||
document = "foo bar"
|
||||
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length)
|
||||
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length) # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 384
|
||||
|
||||
@@ -49,10 +49,10 @@ async def test_fastembed_async_embedding_documents(
|
||||
) -> None:
|
||||
"""Test fastembed embeddings for documents."""
|
||||
documents = ["foo bar", "bar foo"]
|
||||
embedding = FastEmbedEmbeddings(
|
||||
embedding = FastEmbedEmbeddings( # type: ignore[call-arg]
|
||||
model_name=model_name,
|
||||
max_length=max_length,
|
||||
doc_embed_type=doc_embed_type,
|
||||
doc_embed_type=doc_embed_type, # type: ignore[arg-type]
|
||||
threads=threads,
|
||||
)
|
||||
output = await embedding.aembed_documents(documents)
|
||||
@@ -69,6 +69,6 @@ async def test_fastembed_async_embedding_query(
|
||||
) -> None:
|
||||
"""Test fastembed embeddings for query."""
|
||||
document = "foo bar"
|
||||
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length)
|
||||
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length) # type: ignore[call-arg]
|
||||
output = await embedding.aembed_query(document)
|
||||
assert len(output) == 384
|
||||
|
@@ -9,7 +9,7 @@ from langchain_community.embeddings.google_palm import GooglePalmEmbeddings
|
||||
def test_google_palm_embedding_documents() -> None:
|
||||
"""Test Google PaLM embeddings."""
|
||||
documents = ["foo bar"]
|
||||
embedding = GooglePalmEmbeddings()
|
||||
embedding = GooglePalmEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 768
|
||||
@@ -18,7 +18,7 @@ def test_google_palm_embedding_documents() -> None:
|
||||
def test_google_palm_embedding_documents_multiple() -> None:
|
||||
"""Test Google PaLM embeddings."""
|
||||
documents = ["foo bar", "bar foo", "foo"]
|
||||
embedding = GooglePalmEmbeddings()
|
||||
embedding = GooglePalmEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 3
|
||||
assert len(output[0]) == 768
|
||||
@@ -29,6 +29,6 @@ def test_google_palm_embedding_documents_multiple() -> None:
|
||||
def test_google_palm_embedding_query() -> None:
|
||||
"""Test Google PaLM embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = GooglePalmEmbeddings()
|
||||
embedding = GooglePalmEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 768
|
||||
|
@@ -7,7 +7,7 @@ from langchain_community.embeddings import HuggingFaceHubEmbeddings
|
||||
def test_huggingfacehub_embedding_documents() -> None:
|
||||
"""Test huggingfacehub embeddings."""
|
||||
documents = ["foo bar"]
|
||||
embedding = HuggingFaceHubEmbeddings()
|
||||
embedding = HuggingFaceHubEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 768
|
||||
@@ -16,7 +16,7 @@ def test_huggingfacehub_embedding_documents() -> None:
|
||||
async def test_huggingfacehub_embedding_async_documents() -> None:
|
||||
"""Test huggingfacehub embeddings."""
|
||||
documents = ["foo bar"]
|
||||
embedding = HuggingFaceHubEmbeddings()
|
||||
embedding = HuggingFaceHubEmbeddings() # type: ignore[call-arg]
|
||||
output = await embedding.aembed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 768
|
||||
@@ -25,7 +25,7 @@ async def test_huggingfacehub_embedding_async_documents() -> None:
|
||||
def test_huggingfacehub_embedding_query() -> None:
|
||||
"""Test huggingfacehub embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = HuggingFaceHubEmbeddings()
|
||||
embedding = HuggingFaceHubEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 768
|
||||
|
||||
@@ -33,7 +33,7 @@ def test_huggingfacehub_embedding_query() -> None:
|
||||
async def test_huggingfacehub_embedding_async_query() -> None:
|
||||
"""Test huggingfacehub embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = HuggingFaceHubEmbeddings()
|
||||
embedding = HuggingFaceHubEmbeddings() # type: ignore[call-arg]
|
||||
output = await embedding.aembed_query(document)
|
||||
assert len(output) == 768
|
||||
|
||||
@@ -42,4 +42,4 @@ def test_huggingfacehub_embedding_invalid_repo() -> None:
|
||||
"""Test huggingfacehub embedding repo id validation."""
|
||||
# Only sentence-transformers models are currently supported.
|
||||
with pytest.raises(ValueError):
|
||||
HuggingFaceHubEmbeddings(repo_id="allenai/specter")
|
||||
HuggingFaceHubEmbeddings(repo_id="allenai/specter") # type: ignore[call-arg]
|
||||
|
@@ -5,7 +5,7 @@ from langchain_community.embeddings.jina import JinaEmbeddings
|
||||
def test_jina_embedding_documents() -> None:
|
||||
"""Test jina embeddings for documents."""
|
||||
documents = ["foo bar", "bar foo"]
|
||||
embedding = JinaEmbeddings()
|
||||
embedding = JinaEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 512
|
||||
@@ -14,6 +14,6 @@ def test_jina_embedding_documents() -> None:
|
||||
def test_jina_embedding_query() -> None:
|
||||
"""Test jina embeddings for query."""
|
||||
document = "foo bar"
|
||||
embedding = JinaEmbeddings()
|
||||
embedding = JinaEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 512
|
||||
|
@@ -11,7 +11,7 @@ def test_laser_embedding_documents(lang: str) -> None:
|
||||
User warning is returned by LASER library implementation
|
||||
so will ignore in testing."""
|
||||
documents = ["hello", "world"]
|
||||
embedding = LaserEmbeddings(lang=lang)
|
||||
embedding = LaserEmbeddings(lang=lang) # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2 # type: ignore[arg-type]
|
||||
assert len(output[0]) == 1024 # type: ignore[index]
|
||||
@@ -24,6 +24,6 @@ def test_laser_embedding_query(lang: str) -> None:
|
||||
User warning is returned by LASER library implementation
|
||||
so will ignore in testing."""
|
||||
query = "hello world"
|
||||
embedding = LaserEmbeddings(lang=lang)
|
||||
embedding = LaserEmbeddings(lang=lang) # type: ignore[call-arg]
|
||||
output = embedding.embed_query(query)
|
||||
assert len(output) == 1024
|
||||
|
@@ -31,7 +31,7 @@ def test_llamacpp_embedding_documents() -> None:
|
||||
"""Test llamacpp embeddings."""
|
||||
documents = ["foo bar"]
|
||||
model_path = get_model()
|
||||
embedding = LlamaCppEmbeddings(model_path=model_path)
|
||||
embedding = LlamaCppEmbeddings(model_path=model_path) # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 512
|
||||
@@ -41,6 +41,6 @@ def test_llamacpp_embedding_query() -> None:
|
||||
"""Test llamacpp embeddings."""
|
||||
document = "foo bar"
|
||||
model_path = get_model()
|
||||
embedding = LlamaCppEmbeddings(model_path=model_path)
|
||||
embedding = LlamaCppEmbeddings(model_path=model_path) # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 512
|
||||
|
@@ -12,7 +12,7 @@ from langchain_community.embeddings.premai import PremAIEmbeddings
|
||||
|
||||
@pytest.fixture
|
||||
def embedder() -> PremAIEmbeddings:
|
||||
return PremAIEmbeddings(project_id=8, model="text-embedding-3-small")
|
||||
return PremAIEmbeddings(project_id=8, model="text-embedding-3-small") # type: ignore[call-arg]
|
||||
|
||||
|
||||
def test_prem_embedding_documents(embedder: PremAIEmbeddings) -> None:
|
||||
|
@@ -6,7 +6,7 @@ from langchain_community.embeddings.baidu_qianfan_endpoint import (
|
||||
|
||||
def test_embedding_multiple_documents() -> None:
|
||||
documents = ["foo", "bar"]
|
||||
embedding = QianfanEmbeddingsEndpoint()
|
||||
embedding = QianfanEmbeddingsEndpoint() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 384
|
||||
@@ -15,20 +15,20 @@ def test_embedding_multiple_documents() -> None:
|
||||
|
||||
def test_embedding_query() -> None:
|
||||
query = "foo"
|
||||
embedding = QianfanEmbeddingsEndpoint()
|
||||
embedding = QianfanEmbeddingsEndpoint() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(query)
|
||||
assert len(output) == 384
|
||||
|
||||
|
||||
def test_model() -> None:
|
||||
documents = ["hi", "qianfan"]
|
||||
embedding = QianfanEmbeddingsEndpoint(model="Embedding-V1")
|
||||
embedding = QianfanEmbeddingsEndpoint(model="Embedding-V1") # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2
|
||||
|
||||
|
||||
def test_rate_limit() -> None:
|
||||
llm = QianfanEmbeddingsEndpoint(
|
||||
llm = QianfanEmbeddingsEndpoint( # type: ignore[call-arg]
|
||||
model="Embedding-V1", init_kwargs={"query_per_second": 2}
|
||||
)
|
||||
assert llm.client._client._rate_limiter._sync_limiter._query_per_second == 2
|
||||
|
@@ -77,7 +77,7 @@ def test_self_hosted_embedding_documents() -> None:
|
||||
"""Test self-hosted huggingface instruct embeddings."""
|
||||
documents = ["foo bar"] * 2
|
||||
gpu = get_remote_instance()
|
||||
embedding = SelfHostedEmbeddings(
|
||||
embedding = SelfHostedEmbeddings( # type: ignore[call-arg]
|
||||
model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn
|
||||
)
|
||||
output = embedding.embed_documents(documents)
|
||||
@@ -89,7 +89,7 @@ def test_self_hosted_embedding_query() -> None:
|
||||
"""Test self-hosted custom embeddings."""
|
||||
query = "foo bar"
|
||||
gpu = get_remote_instance()
|
||||
embedding = SelfHostedEmbeddings(
|
||||
embedding = SelfHostedEmbeddings( # type: ignore[call-arg]
|
||||
model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn
|
||||
)
|
||||
output = embedding.embed_query(query)
|
||||
|
@@ -17,7 +17,7 @@ def test_baichuan_embedding_documents() -> None:
|
||||
"understand and think, "
|
||||
"creating a better world with artificial intelligence."
|
||||
]
|
||||
embedding = SparkLLMTextEmbeddings()
|
||||
embedding = SparkLLMTextEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1 # type: ignore[arg-type]
|
||||
assert len(output[0]) == 2560 # type: ignore[index]
|
||||
@@ -30,6 +30,6 @@ def test_baichuan_embedding_query() -> None:
|
||||
"first Artificial Intelligence open platform for Mobile Internet "
|
||||
"and intelligent hardware developers"
|
||||
)
|
||||
embedding = SparkLLMTextEmbeddings()
|
||||
embedding = SparkLLMTextEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 2560 # type: ignore[arg-type]
|
||||
|
@@ -5,7 +5,7 @@ from langchain_community.embeddings import VolcanoEmbeddings
|
||||
def test_embedding_documents() -> None:
|
||||
"""Test embeddings for documents."""
|
||||
documents = ["foo", "bar"]
|
||||
embedding = VolcanoEmbeddings()
|
||||
embedding = VolcanoEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 1024
|
||||
@@ -14,6 +14,6 @@ def test_embedding_documents() -> None:
|
||||
def test_embedding_query() -> None:
|
||||
"""Test embeddings for query."""
|
||||
document = "foo bar"
|
||||
embedding = VolcanoEmbeddings()
|
||||
embedding = VolcanoEmbeddings() # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 1024
|
||||
|
@@ -8,7 +8,7 @@ MODEL = "voyage-2"
|
||||
def test_voyagi_embedding_documents() -> None:
|
||||
"""Test voyage embeddings."""
|
||||
documents = ["foo bar"]
|
||||
embedding = VoyageEmbeddings(model=MODEL)
|
||||
embedding = VoyageEmbeddings(model=MODEL) # type: ignore[call-arg]
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 1024
|
||||
@@ -16,7 +16,7 @@ def test_voyagi_embedding_documents() -> None:
|
||||
|
||||
def test_voyagi_with_default_model() -> None:
|
||||
"""Test voyage embeddings."""
|
||||
embedding = VoyageEmbeddings()
|
||||
embedding = VoyageEmbeddings() # type: ignore[call-arg]
|
||||
assert embedding.model == "voyage-01"
|
||||
assert embedding.batch_size == 7
|
||||
documents = [f"foo bar {i}" for i in range(72)]
|
||||
@@ -40,6 +40,6 @@ def test_voyage_embedding_documents_multiple() -> None:
|
||||
def test_voyage_embedding_query() -> None:
|
||||
"""Test voyage embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = VoyageEmbeddings(model=MODEL)
|
||||
embedding = VoyageEmbeddings(model=MODEL) # type: ignore[call-arg]
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 1024
|
||||
|
Reference in New Issue
Block a user